Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andreas Keller is active.

Publication


Featured researches published by Andreas Keller.


Nature | 2007

Genetic variation in a human odorant receptor alters odour perception

Andreas Keller; Hanyi Zhuang; Qiuyi Chi; Leslie B. Vosshall; Hiroaki Matsunami

Human olfactory perception differs enormously between individuals, with large reported perceptual variations in the intensity and pleasantness of a given odour. For instance, androstenone (5α-androst-16-en-3-one), an odorous steroid derived from testosterone, is variously perceived by different individuals as offensive (“sweaty, urinous”), pleasant (“sweet, floral”) or odourless. Similar variation in odour perception has been observed for several other odours. The mechanistic basis of variation in odour perception between individuals is unknown. We investigated whether genetic variation in human odorant receptor genes accounts in part for variation in odour perception between individuals. Here we show that a human odorant receptor, OR7D4, is selectively activated in vitro by androstenone and the related odorous steroid androstadienone (androsta-4,16-dien-3-one) and does not respond to a panel of 64 other odours and two solvents. A common variant of this receptor (OR7D4 WM) contains two non-synonymous single nucleotide polymorphisms (SNPs), resulting in two amino acid substitutions (R88W, T133M; hence ‘RT’) that severely impair function in vitro. Human subjects with RT/WM or WM/WM genotypes as a group were less sensitive to androstenone and androstadienone and found both odours less unpleasant than the RT/RT group. Genotypic variation in OR7D4 accounts for a significant proportion of the valence (pleasantness or unpleasantness) and intensity variance in perception of these steroidal odours. Our results demonstrate the first link between the function of a human odorant receptor in vitro and odour perception.


PLOS ONE | 2009

Multiple Sclerosis: MicroRNA Expression Profiles Accurately Differentiate Patients with Relapsing- Remitting Disease from Healthy Controls

Andreas Keller; Petra Leidinger; Julia Lange; Anne Borries; Hannah Schroers; Matthias Scheffler; Hans-Peter Lenhof; Klemens Ruprecht; Eckart Meese

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system, which is heterogenous with respect to clinical manifestations and response to therapy. Identification of biomarkers appears desirable for an improved diagnosis of MS as well as for monitoring of disease activity and treatment response. MicroRNAs (miRNAs) are short non-coding RNAs, which have been shown to have the potential to serve as biomarkers for different human diseases, most notably cancer. Here, we analyzed the expression profiles of 866 human miRNAs. In detail, we investigated the miRNA expression in blood cells of 20 patients with relapsing-remitting MS (RRMS) and 19 healthy controls using a human miRNA microarray and the Geniom Real Time Analyzer (GRTA) platform. We identified 165 miRNAs that were significantly up- or downregulated in patients with RRMS as compared to healthy controls. The best single miRNA marker, hsa-miR-145, allowed discriminating MS from controls with a specificity of 89.5%, a sensitivity of 90.0%, and an accuracy of 89.7%. A set of 48 miRNAs that was evaluated by radial basis function kernel support vector machines and 10-fold cross validation yielded a specificity of 95%, a sensitivity of 97.6%, and an accuracy of 96.3%. While 43 of the 165 miRNAs deregulated in patients with MS have previously been related to other human diseases, the remaining 122 miRNAs are so far exclusively associated with MS. The implications of our study are twofold. The miRNA expression profiles in blood cells may serve as a biomarker for MS, and deregulation of miRNA expression may play a role in the pathogenesis of MS.


Science | 2014

Humans Can Discriminate More than 1 Trillion Olfactory Stimuli

C. Bushdid; Marcelo O. Magnasco; Leslie B. Vosshall; Andreas Keller

All the Smells of the World How many odorant stimuli can a normal human being discriminate? During psychophysical tests of odor mixture discrimination, Bushdid et al. (p. 1370) were surprised to find that humans can discriminate among more than a trillion different smells. Because the authors reduced the complexity by investigating only mixtures of 10, 20, or 30 components drawn from a collection of 128 odorous molecules, this astonishingly large number is probably the lower limit of the potential number of olfactory stimuli that humans can distinguish. The number of different odor mixtures people can distinguish is several orders of magnitude larger than anticipated. Humans can discriminate several million different colors and almost half a million different tones, but the number of discriminable olfactory stimuli remains unknown. The lay and scientific literature typically claims that humans can discriminate 10,000 odors, but this number has never been empirically validated. We determined the resolution of the human sense of smell by testing the capacity of humans to discriminate odor mixtures with varying numbers of shared components. On the basis of the results of psychophysical testing, we calculated that humans can discriminate at least 1 trillion olfactory stimuli. This is far more than previous estimates of distinguishable olfactory stimuli. It demonstrates that the human olfactory system, with its hundreds of different olfactory receptors, far outperforms the other senses in the number of physically different stimuli it can discriminate.


Basic Research in Cardiology | 2011

MicroRNA signatures in total peripheral blood as novel biomarkers for acute myocardial infarction.

Benjamin Meder; Andreas Keller; Britta Vogel; Jan Haas; Farbod Sedaghat-Hamedani; Elham Kayvanpour; Steffen Just; Anne Borries; Jessica Rudloff; Petra Leidinger; Eckart Meese; Hugo A. Katus; Wolfgang Rottbauer

MicroRNAs (miRNAs) are important regulators of adaptive and maladaptive responses in cardiovascular diseases and hence are considered to be potential therapeutical targets. However, their role as novel biomarkers for the diagnosis of cardiovascular diseases still needs to be systematically evaluated. We assessed here for the first time whole-genome miRNA expression in peripheral total blood samples of patients with acute myocardial infarction (AMI). We identified 121 miRNAs, which are significantly dysregulated in AMI patients in comparison to healthy controls. Among these, miR-1291 and miR-663b show the highest sensitivity and specificity for the discrimination of cases from controls. Using a novel self-learning pattern recognition algorithm, we identified a unique signature of 20 miRNAs that predicts AMI with even higher power (specificity 96%, sensitivity 90%, and accuracy 93%). In addition, we show that miR-30c and miR-145 levels correlate with infarct sizes estimated by Troponin T release. The here presented study shows that single miRNAs and especially miRNA signatures derived from peripheral blood, could be valuable novel biomarkers for cardiovascular diseases.


BMC Cancer | 2009

miRNAs in lung cancer - studying complex fingerprints in patient's blood cells by microarray experiments.

Andreas Keller; Petra Leidinger; Anne Borries; Anke Wendschlag; Frank Wucherpfennig; Matthias Scheffler; Hanno Huwer; Hans-Peter Lenhof; Eckart Meese

BackgroundDeregulated miRNAs are found in cancer cells and recently in blood cells of cancer patients. Due to their inherent stability miRNAs may offer themselves for blood based tumor diagnosis. Here we addressed the question whether there is a sufficient number of miRNAs deregulated in blood cells of cancer patients to be able to distinguish between cancer patients and controls.MethodsWe synthesized 866 human miRNAs and miRNA star sequences as annotated in the Sanger miRBase onto a microarray designed by febit biomed gmbh. Using the fully automated Geniom Real Time Analyzer platform, we analyzed the miRNA expression in 17 blood cell samples of patients with non-small cell lung carcinomas (NSCLC) and in 19 blood samples of healthy controls.ResultsUsing t-test, we detected 27 miRNAs significantly deregulated in blood cells of lung cancer patients as compared to the controls. Some of these miRNAs were validated using qRT-PCR. To estimate the value of each deregulated miRNA, we grouped all miRNAs according to their diagnostic information that was measured by Mutual Information. Using a subset of 24 miRNAs, a radial basis function Support Vector Machine allowed for discriminating between blood cellsamples of tumor patients and controls with an accuracy of 95.4% [94.9%-95.9%], a specificity of 98.1% [97.3%-98.8%], and a sensitivity of 92.5% [91.8%-92.5%].ConclusionOur findings support the idea that neoplasia may lead to a deregulation of miRNA expression in blood cells of cancer patients compared to blood cells of healthy individuals. Furthermore, we provide evidence that miRNA patterns can be used to detect human cancers from blood cells.


Circulation-cardiovascular Genetics | 2011

Targeted Next-Generation Sequencing for the Molecular Genetic Diagnostics of Cardiomyopathies

Benjamin Meder; Jan Haas; Andreas Keller; Christiane Heid; Steffen Just; Anne Borries; Valesca Boisguerin; Maren Scharfenberger-Schmeer; Peer F. Stähler; Markus Beier; Dieter Weichenhan; Tim M. Strom; Arne Pfeufer; Bernhard Korn; Hugo A. Katus; Wolfgang Rottbauer

Background—Today, mutations in more than 30 different genes have been found to cause inherited cardiomyopathies, some associated with very poor prognosis. However, because of the genetic heterogeneity and limitations in throughput and scalability of current diagnostic tools up until now, it is hardly possible to genetically characterize patients with cardiomyopathy in a fast, comprehensive, and cost-efficient manner. Methods and Results—We established an array-based subgenomic enrichment followed by next-generation sequencing to detect mutations in patients with hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM). With this approach, we show that the genomic region of interest can be enriched by a mean factor of 2169 compared with the coverage of the whole genome, resulting in high sequence coverage of selected disease genes and allowing us to define the genetic pathogenesis of cardiomyopathies in a single sequencing run. In 6 patients, we detected disease-causing mutations, 2 microdeletions, and 4 point mutations. Furthermore, we identified several novel nonsynonymous variants, which are predicted to be harmful, and hence, might be potential disease mutations or modifiers for DCM or HCM. Conclusions—The approach presented here allows for the first time a comprehensive genetic screening in patients with hereditary DCM or HCM in a fast and cost-efficient manner.


Proceedings of the National Academy of Sciences of the United States of America | 2001

A central neural circuit for experience-independent olfactory and courtship behavior in Drosophila melanogaster.

Gertrud Heimbeck; Véronique Bugnon; Nanaë Gendre; Andreas Keller; Reinhard F. Stocker

We have studied the function of the major central olfactory pathway in fruit flies. Key elements of this pathway, the projection neurons (PNs), connect the antennal lobes with the lateral protocerebrum both directly and indirectly, the latter via the mushroom bodies (MBs). Transgenic expression of tetanus toxin in the majority of PNs and few MB neurons leads to defects in odor detection and male courtship. Considering behavioral data from flies lacking MBs, our results argue that the direct PN-to-lateral protocerebrum pathway is necessary and sufficient to process these experience-independent behaviors. Moreover, the involvement of an olfactory pathway in male courtship suggests a role of volatile attractive female pheromones in Drosophila.


BMC Cancer | 2010

High-throughput miRNA profiling of human melanoma blood samples

Petra Leidinger; Andreas Keller; Anne Borries; Jörg Reichrath; Knuth Rass; Sven Uwe Jager; Hans-Peter Lenhof; Eckart Meese

BackgroundMicroRNA (miRNA) signatures are not only found in cancer tissue but also in blood of cancer patients. Specifically, miRNA detection in blood offers the prospect of a non-invasive analysis tool.MethodsUsing a microarray based approach we screened almost 900 human miRNAs to detect miRNAs that are deregulated in their expression in blood cells of melanoma patients. We analyzed 55 blood samples, including 20 samples of healthy individuals, 24 samples of melanoma patients as test set, and 11 samples of melanoma patients as independent validation set.ResultsA hypothesis test based approch detected 51 differentially regulated miRNAs, including 21 miRNAs that were downregulated in blood cells of melanoma patients and 30 miRNAs that were upregulated in blood cells of melanoma patients as compared to blood cells of healthy controls. The tets set and the independent validation set of the melanoma samples showed a high correlation of fold changes (0.81). Applying hierarchical clustering and principal component analysis we found that blood samples of melanoma patients and healthy individuals can be well differentiated from each other based on miRNA expression analysis. Using a subset of 16 significant deregulated miRNAs, we were able to reach a classification accuracy of 97.4%, a specificity of 95% and a sensitivity of 98.9% by supervised analysis. MiRNA microarray data were validated by qRT-PCR.ConclusionsOur study provides strong evidence for miRNA expression signatures of blood cells as useful biomarkers for melanoma.


Nature Neuroscience | 2014

The missense of smell: functional variability in the human odorant receptor repertoire

Andreas Keller; Yun R. Li; Ting Zhou; Casey Trimmer; Lindsey L. Snyder; Andrew H Moberly; Kaylin A. Adipietro; Wen Ling L Liu; Hanyi Zhuang; Senmiao Zhan; Somin S Lee; Abigail Lin; Hiroaki Matsunami

Humans have ∼400 intact odorant receptors, but each individual has a unique set of genetic variations that lead to variation in olfactory perception. We used a heterologous assay to determine how often genetic polymorphisms in odorant receptors alter receptor function. We identified agonists for 18 odorant receptors and found that 63% of the odorant receptors we examined had polymorphisms that altered in vitro function. On average, two individuals have functional differences at over 30% of their odorant receptor alleles. To show that these in vitro results are relevant to olfactory perception, we verified that variations in OR10G4 genotype explain over 15% of the observed variation in perceived intensity and over 10% of the observed variation in perceived valence for the high-affinity in vitro agonist guaiacol but do not explain phenotype variation for the lower-affinity agonists vanillin and ethyl vanillin.


Neuron | 2007

Activity-Dependent Plasticity in an Olfactory Circuit

Silke Sachse; Erroll Rueckert; Andreas Keller; Ryuichi Okada; Nobuaki Tanaka; Kei Ito; Leslie B. Vosshall

Olfactory sensory neurons (OSNs) form synapses with local interneurons and second-order projection neurons to form stereotyped olfactory glomeruli. This primary olfactory circuit is hard-wired through the action of genetic cues. We asked whether individual glomeruli have the capacity for stimulus-evoked plasticity by focusing on the carbon dioxide (CO2) circuit in Drosophila. Specialized OSNs detect this gas and relay the information to a dedicated circuit in the brain. Prolonged exposure to CO2 induced a reversible volume increase in the CO2-specific glomerulus. OSNs showed neither altered morphology nor function after chronic exposure, but one class of inhibitory local interneurons showed significantly increased responses to CO2. Two-photon imaging of the axon terminals of a single PN innervating the CO2 glomerulus showed significantly decreased functional output following CO2 exposure. Behavioral responses to CO2 were also reduced after such exposure. We suggest that activity-dependent functional plasticity may be a general feature of the Drosophila olfactory system.

Collaboration


Dive into the Andreas Keller's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Haas

Heidelberg University

View shared research outputs
Researchain Logo
Decentralizing Knowledge