Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andreas Kroh is active.

Publication


Featured researches published by Andreas Kroh.


Journal of Systematic Palaeontology | 2010

The phylogeny and classification of post-Palaeozoic echinoids

Andreas Kroh; Andrew B. Smith

The relationships of post-Palaeozoic echinoids at family level are established through phylogenetic analysis of 169 taxa and 306 skeletal characters (excluding pedicellariae). Previous phylogenetic analyses of echinoids have either examined specific subgroups in detail or have looked at a relatively small number of taxa selected from across the class, with sparse sampling potentially affecting the reliability of results adversely. Our new analyses represent a compromise between encompassing the diversity of form that exists, while keeping the number of taxa to a level that does not make rigorous analysis impossibly time-consuming. In constructing the taxon-character data matrix we have encountered a surprising lack of primary data on plating pattern, lantern, and girdle structure for many supposedly “well-known” taxa. A well-resolved phylogenetic hypothesis was obtained and is used as the basis for a formal classification. Characters generally have a high retention index (>0.7) but low consistency index (<0.25) suggesting that, although characters are largely retained after they first evolve, most also undergo occasional reversal or convergence. Although parts of the resulting trees are only weakly supported (e.g. the precise sister group of the Irregularia), other parts are unambiguously resolved. Not unexpectedly, deep nodes are often not supported by unique apomorphies and higher taxa acquire their characteristic set of features over time. Diagnoses based on crown group taxa thus often fail to encompass fossil stem-group members adequately. Establishing the relationships of taxa at the root of large groups is hampered by limited character resolution. The influence of fossil taxa on the topology was explored by comparing the tree topologies obtained with and without their inclusion. We show that removal of fossils from stem groups makes no difference where their crown group is morphologically conservative, but has a major influence where extant sister groups are separated by large morphological gaps. Completeness of the echinoid record and its match to the stratigraphical record of first occurrences is tested using various metrics and found to be highly congruent, with irregular echinoids showing a higher congruence than regular ones.


Geological Society, London, Special Publications | 2009

Oligocene-Miocene basin evolution in SE Anatolia, Turkey: constraints on the closure of the eastern Tethys gateway

Silja K. Hüsing; W.J. Zachariasse; Douwe J. J. van Hinsbergen; Wout Krijgsman; Murat Inceöz; Mathias Harzhauser; Oleg Mandic; Andreas Kroh

Abstract The Oligocene–Miocene was a time characterized by major climate changes as well as changing plate configurations. The Middle Miocene Climate Transition (17 to 11 Ma) may even have been triggered by a plate tectonic event: the closure of the eastern Tethys gateway, the marine connection between the Mediterranean and Indian Ocean. To address this idea, we focus on the evolution of Oligocene and Miocene foreland basins in the southernmost part of Turkey, the most likely candidates to have formed this gateway. In addition, we take the geodynamic evolution of the Arabian–Eurasian collision into account. The Muş and Elazığ basins, located to the north of the Bitlis–Zagros suture zone, were most likely connected during the Oligocene. The deepening of both basins is biostratigraphically dated by us to occur during the Rupelian (Early Oligocene). Deep marine conditions (between 350 and 750 m) prevailed until the Chattian (Late Oligocene), when the basins shoaled rapidly to subtidal/intertidal environment in tropical to subtropical conditions, as indicated by the macrofossil assemblages. We conclude that the emergence of this basin during the Chattian severely restricted the marine connection between an eastern (Indian Ocean) and western (Mediterranean) marine domain. If a connection persisted it was likely located south of the Bitlis–Zagros suture zone. The Kahramanmaraş basin, located on the northern Arabian promontory south of the Bitlis–Zagros suture zone, was a foreland basin during the Middle and Late Miocene, possibly linked to the Hatay basin to the west and the Lice basin to the east. Our data indicates that this foreland basin experienced shallow marine conditions during the Langhian, followed by a rapid deepening during Langhian/Serravallian and prevailing deep marine conditions (between 350 and 750 m) until the early Tortonian. We have dated the youngest sediments underneath a subduction-related thrust at c. 11 Ma and suggest that this corresponds to the end of underthrusting in the Kahramanmaraş region, i.e. the end of subduction of Arabia. This age coincides in time with the onset of eastern Anatolian volcanism, uplift of the East Anatolian Accretionary Complex, and the onset of the North and East Anatolian Fault Zones accommodating westward escape tectonics of Anatolia. After c. 11 Ma, the foreland basin south of the Bitlis formed not (or no longer) a deep marine connection along the northern margin of Arabia between the Mediterranean Sea and the Indian Ocean. We finally conclude that a causal link between gateway closure and global climate change to a cooler mode, recorded in the Mi3b event (δ18O increase) dated at 13.82 Ma, cannot be supported.


PALAIOS | 2002

The Stormy Path from Life to Death Assemblages: The Formation and Preservation of Mass Accumulations of Fossil Sand Dollars

James H. Nebelsick; Andreas Kroh

Abstract Clypeasteroids can be very common in Recent, shallow water environments in a variety of biogeographic settings and represent important members of benthic invertebrate communities. Mass deposits of fossil clypeasteroids are also common and characteristic of many Cenozoic shallow water deposits. Their distribution and formation, however, has received much less attention than molluscan counterparts, although fossil examples are found within all three of the clypeasteroid suborders. A comparison of two mass deposits of scutellid clypeasteroids from the Miocene of the Mediterranean (Gebel Gharra section, Eastern Desert, Egypt; Alahan Section, Mut Basin, Turkey) shows common features, but also significant differences. Both were formed in high energy, coarse sandy, shoreface environments. The Gebel Gharra section consists of a thick, multi-event accumulation with numerous sedimentary features dominated by complete and fragmented skeletal remains of a single taxon (Parascutella). The accumulations in Alahan represents a single, thin, multi-taxon (Amphiope, Parascutella) deposit dominated by very well preserved, complete specimens. Both units are interpreted as proximal storm deposits based on the general sedimentary environment, clast relationships, and taphonomic features. Four factors contributing to mass deposits of clypeasteroid sea urchins in Cenozoic sediments include: (1) their gregarious nature with very high density populations; (2) their relatively robust skeletal morphology; (3) the high transport capacity of their flattened, low density skeletons; and (4) their habitat in shoreface environments which is conducive to physical concentrations of skeletal material. The presence of mass clypeasteroid accumulations is compared to other echinoderm deposits and discussed within the context of their rapid evolution in the Cenozoic.


Palaeogeography, Palaeoclimatology, Palaeoecology | 2003

Echinoid assemblages as a tool for palaeoenvironmental reconstruction – an example from the Early Miocene of Egypt

Andreas Kroh; James H. Nebelsick

Abstract A rich Lower Miocene echinoid fauna has been investigated from Gebel Gharra, NW of Suez, Egypt. The ca 140 m long section consists of a siliciclastic lower part and a carbonate-dominated upper part. This corresponds to a general transgression/regression cycle. In all, 27 different echinoid taxa were recognised. The level of taxonomic identification varies depending on test completeness and preservation of specific morphological characters. The palaeoecology of the echinoids was inferred using a functional morphological approach and actualistic comparisons. A wide variety of ecological habitats are represented with the presence of regular as well as irregular sea urchins; epibenthic as well as endobenthic forms, as well as a wide range of interpreted burrowing depths for different irregular echinoids. Seven different echinoid assemblages were distinguished, which differ with respect to the species diversity, skeletal taphonomy and sedimentary environment: (1) the Parascutella Assemblage displays spectacular mass accumulations of sand dollars accumulated by proximal storm deposits and winnowing; (2) the Cidaroid–Echinacea Assemblage represents a slightly deeper, moderate-energy environment with a highly structured habitat and corresponding variety of regular and irregular sea urchins; (3) a Spatangoid Assemblage with a diverse fauna of burrowing echinoids; (4) the Transported Assemblage represents an allochthonous collection of echinoids from shallow-water, coarse sandy substrates; (5) the Mixed Assemblage representing a slightly shallower, low- to moderate-energy environment with reduced sedimentation rates; (6) a Clypeaster martini Assemblage characterising a shallow, higher-energy environment; (7) finally, the poorly diverse Phyllacanthus Assemblage from shallow-water carbonates. Diversity variations within the assemblages are correlated primarily to substrate variation, burrowing depths as well as taphonomic factors. The transgression/regression cycle is well reflected by the echinoid assemblages, which show a general deepening of depositional environment followed by shallowing upward tendencies.


PLOS ONE | 2012

Ancient Origin of the Modern Deep-Sea Fauna

Ben Thuy; Andy S. Gale; Andreas Kroh; Michal Kucera; Lea D. Numberger-Thuy; Mike Reich; Sabine Stöhr

The origin and possible antiquity of the spectacularly diverse modern deep-sea fauna has been debated since the beginning of deep-sea research in the mid-nineteenth century. Recent hypotheses, based on biogeographic patterns and molecular clock estimates, support a latest Mesozoic or early Cenozoic date for the origin of key groups of the present deep-sea fauna (echinoids, octopods). This relatively young age is consistent with hypotheses that argue for extensive extinction during Jurassic and Cretaceous Oceanic Anoxic Events (OAEs) and the mid-Cenozoic cooling of deep-water masses, implying repeated re-colonization by immigration of taxa from shallow-water habitats. Here we report on a well-preserved echinoderm assemblage from deep-sea (1000–1500 m paleodepth) sediments of the NE-Atlantic of Early Cretaceous age (114 Ma). The assemblage is strikingly similar to that of extant bathyal echinoderm communities in composition, including families and genera found exclusively in modern deep-sea habitats. A number of taxa found in the assemblage have no fossil record at shelf depths postdating the assemblage, which precludes the possibility of deep-sea recolonization from shallow habitats following episodic extinction at least for those groups. Our discovery provides the first key fossil evidence that a significant part of the modern deep-sea fauna is considerably older than previously assumed. As a consequence, most major paleoceanographic events had far less impact on the diversity of deep-sea faunas than has been implied. It also suggests that deep-sea biota are more resilient to extinction events than shallow-water forms, and that the unusual deep-sea environment, indeed, provides evolutionary stability which is very rarely punctuated on macroevolutionary time scales.


Geologica Carpathica | 2010

High resolution stratigraphy of the Jurassic-Cretaceous boundary interval in the Gresten Klippenbelt (Austria)

Alexander Lukeneder; Eva Halásová; Andreas Kroh; Susanne Mayrhofer; Petr Pruner; Daniela Reháková; Petr Schnabl; Mario Sprovieri; Michael Wagreich

High resolution stratigraphy of the Jurassic-Cretaceous boundary interval in the Gresten Klippenbelt (Austria) The key objective of investigation of hemipelagic sediments from the Gresten Klippenbelt (Blassenstein Formation, Ultrahelvetic paleogeographic realm) was to shed light on environmental changes around the Jurassic-Cretaceous (J/K) boundary on the northern margin of the Penninic Ocean. This boundary is well exposed in a newly discovered site at Nutzhof. Around the critical interval including the boundary, this new outcrop bears a rich microplanktonic assemblage characterized by typical J/K (Tithonian/Berriasian) boundary faunas. The Nutzhof section is located in the Gresten Klippenbelt (Lower Austria) tectonically wedged into the deep-water sediments of the Rhenodanubian Flysch Zone. In Late Jurassic-Early Cretaceous time the Penninic Ocean was a side tract of the proto-North Atlantic Oceanic System, intercalated between the European and the Austroalpine plates. Its opening started during the Early Jurassic, induced by sea floor spreading, followed by Jurassic-Early Cretaceous deepening of the depositional area of the Gresten Klippenbelt. These tectonically induced paleogeographic changes are mirrored in the lithology and microfauna that record a deepening of the depositional environment from Tithonian to Berriasian sediments of the Blassenstein Formation at Nutzhof. The main lithological change is observed in the Upper Tithonian Crassicollaria Zone, in Chron M20N, whereas the J/K boundary can be precisely fixed at the Crassicollaria-Calpionella boundary, within Chron M19n.2n. The lithological turnover of the deposition from more siliciclastic pelagic marl-limestone cycles into deep-water pelagic limestones is correlated with the deepening of the southern edge of the European continent at this time. Within the Gresten Klippenbelt Unit, this transition is reflected by the lithostratigraphic boundary between siliciclastic-bearing marl-limestone sedimentation in the uppermost Jurassic and lowermost Cretaceous limestone formation, both within the Blassenstein Formation. The cephalopod fauna (ammonites, belemnites, aptychi) and crinoids from the Blassenstein Formation, correlated with calcareous microfossil and nannofossil data combined with isotope and paleomagnetic data, indicate the Tithonian to middle Berriasian (Hybonoticeras hybonotum Zone up to the Subthurmannia occitanica Zone; M17r-M21r). The succession of the Nutzhof section thus represents deposition of a duration of approximately 7 Myr (ca. 150-143 Ma). The deposition of the limestone, marly limestone and marls in this interval occurred during tectonically unstable conditions reflected by common allodapic material. Along with the integrated biostratigraphic, geochemical and isotopic analysis, the susceptibility and gamma-ray measurements were powerful stratigraphic tools and important for the interpretation of the paleogeographic setting. Two reverse magneto-subzones, Kysuca and Brodno, were detected within magnetozones M20n and M19n, respectively.


Proceedings of the Royal Society of London B: Biological Sciences | 2014

First glimpse into Lower Jurassic deep-sea biodiversity: in situ diversification and resilience against extinction

Ben Thuy; Steffen Kiel; Alfréd Dulai; Andy S. Gale; Andreas Kroh; Alan R. Lord; Lea D. Numberger-Thuy; Sabine Stöhr; Max Wisshak

Owing to the assumed lack of deep-sea macrofossils older than the Late Cretaceous, very little is known about the geological history of deep-sea communities, and most inference-based hypotheses argue for repeated recolonizations of the deep sea from shelf habitats following major palaeoceanographic perturbations. We present a fossil deep-sea assemblage of echinoderms, gastropods, brachiopods and ostracods, from the Early Jurassic of the Glasenbach Gorge, Austria, which includes the oldest known representatives of a number of extant deep-sea groups, and thus implies that in situ diversification, in contrast to immigration from shelf habitats, played a much greater role in shaping modern deep-sea biodiversity than previously thought. A comparison with coeval shelf assemblages reveals that, at least in some of the analysed groups, significantly more extant families/superfamilies have endured in the deep sea since the Early Jurassic than in the shelf seas, which suggests that deep-sea biota are more resilient against extinction than shallow-water ones. In addition, a number of extant deep-sea families/superfamilies found in the Glasenbach assemblage lack post-Jurassic shelf occurrences, implying that if there was a complete extinction of the deep-sea fauna followed by replacement from the shelf, it must have happened before the Late Jurassic.


PALAIOS | 2009

A FOSSIL EVERGLADES-TYPE MARL PRAIRIE AND ITS PALEOENVIRONMENTAL SIGNIFICANCE

Markus Reuter; Werner E. Piller; Mathias Harzhauser; Andreas Kroh; Björn Berning

Abstract Located at the interface between land and sea, marl prairies are sensitive to changes in water balance and useful recorders of climate and sea-level changes. Palustrine carbonate in marl prairies precipitates in temporary, barely flooded grasslands within microbial mats. Despite the special mode of carbonate production, descriptions of the sedimentary facies are exceptional and cursory because marl prairies are so far reported only from the recent of the Everglades (Florida, USA), where they produce an unspectacular calcite mud. We present a Pleistocene Everglades-type marl prairie from coastal Tanzania as the first fossil example. The unique preservation and high productivity (two times higher than in the Everglades) of the periphyton community in this marl prairie is due to increased calcification of coccoid and filamentous cyanobacteria. The excellent preservation allows us to characterize a marl prairie facies in great detail for the first time. Facies analyses of the sediments reveal a transition from tidal to terrestrial settings that started at ca. 44 14C ka in response to eustatic sea-level fall and coastal tectonic uplift. The resultant drop of the groundwater table triggered the development of the marl prairie. The decline of the marl prairie was initiated at ca. 33 14C ka due to the onset of the Last Glacial Aridity Maximum in equatorial East Africa.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Tectonics, climate, and the rise and demise of continental aquatic species richness hotspots.

Thomas A. Neubauer; Mathias Harzhauser; Elisavet Georgopoulou; Andreas Kroh; Oleg Mandic

Significance To our knowledge, this study is the first investigation of the evolution of species richness hotspots in continental aquatic systems. We demonstrate the development of European richness hotspots over the last 23 My based on a comprehensive dataset combining recent and fossil occurrences of gastropod species. We show that changes in species richness patterns can be related to geodynamic and climatic processes. The addition of tectonics, geological time, and spatial scales to ecology and climate is essential for understanding hotspot development in general. These insights also provide a foundation to explain the modern, uneven distribution of species richness as a whole. The pattern for Recent European faunas is a geologically young phenomenon, triggered by the ice sheet retreat after the Last Glacial Maximum. Continental aquatic species richness hotspots are unevenly distributed across the planet. In present-day Europe, only two centers of biodiversity exist (Lake Ohrid on the Balkans and the Caspian Sea). During the Neogene, a wide variety of hotspots developed in a series of long-lived lakes. The mechanisms underlying the presence of richness hotspots in different geological periods have not been properly examined thus far. Based on Miocene to Recent gastropod distributions, we show that the existence and evolution of such hotspots in inland-water systems are tightly linked to the geodynamic history of the European continent. Both past and present hotspots are related to the formation and persistence of long-lived lake systems in geological basins or to isolation of existing inland basins and embayments from the marine realm. The faunal evolution within hotspots highly depends on warm climates and surface area. During the Quaternary icehouse climate and extensive glaciations, limnic biodiversity sustained a severe decline across the continent and most former hotspots disappeared. The Recent gastropod distribution is mainly a geologically young pattern formed after the Last Glacial Maximum (19 ky) and subsequent formation of postglacial lakes. The major hotspots today are related to long-lived lakes in preglacially formed, permanently subsiding geological basins.


Palaeontologia Electronica | 2015

Synopsis of European Neogene freshwater gastropod localities: updated stratigraphy and geography

Thomas A. Neubauer; Elisavet Georgopoulou; Andreas Kroh; Mathias Harzhauser; Oleg Mandic; Daniela Esu

The last overview of Cenozoic localities with records of freshwater gastropods was provided more than 80 years ago. Since then, a wealth of new information has been published: new localities have been discovered and fundamental changes occurred in regional stratigraphy. In addition, many localities are still attributed to erroneous or outdated stratigraphical concepts even in recent papers. Geopolitical evolution of Europe has, furthermore, led to name changes and confusion regarding the exact origin of samples in collections. Here we provide a fully georeferenced dataset for almost all published Miocene and Pliocene freshwater gastropod localities (2,930), including updated stratigraphic data where possible. This basic update will serve as an essential fundament for any future work related to the freshwater deposits and respective faunas in general. Thomas A. Neubauer. Geological-Paleontological Department, Natural History Museum Vienna, Burgring 7, 1010 Vienna, Austria [email protected] Elisavet Georgopoulou. Geological-Paleontological Department, Natural History Museum Vienna, Burgring 7, 1010 Vienna, Austria [email protected] Andreas Kroh. Geological-Paleontological Department, Natural History Museum Vienna, Burgring 7, 1010 Vienna, Austria [email protected] Mathias Harzhauser. Geological-Paleontological Department, Natural History Museum Vienna, Burgring 7, 1010 Vienna, Austria [email protected] Oleg Mandic. Geological-Paleontological Department, Natural History Museum Vienna, Burgring 7, 1010 Vienna, Austria [email protected] Daniela Esu. Dipartimento di Scienze della Terra, “Sapienza” University of Rome, P.le A. Moro 5, 00185 Rome, Italy [email protected]

Collaboration


Dive into the Andreas Kroh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Oleg Mandic

Naturhistorisches Museum

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander Lukeneder

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge