Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andreas Kupsch is active.

Publication


Featured researches published by Andreas Kupsch.


Journal of Neural Transmission | 2001

Monoamine oxidase-inhibition and MPTP-induced neurotoxicity in the non-human primate: comparison of rasagiline (TVP 1012) with selegiline.

Andreas Kupsch; Jürgen Sautter; Mario E. Götz; W. Breithaupt; Johannes Schwarz; Moussa B. H. Youdim; Peter Riederer; Manfred Gerlach; Wolfgang H. Oertel

Summary. The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been shown to induce parkinsonism in man and non-human primates. Monoamine-oxidase B (MAO-B) has been reported to be implicated in both MPTP-induced parkinsonism and Parkinsons disease, since selegiline (L-deprenyl), an irreversible MAO-B inhibitor, prevents MPTP-induced neurotoxicity in numerous species including mice, goldfish and drosophyla. However, one disadvantage of this substance relates to its metabolism to (−)-methamphetamine and (−)-amphetamine. Rasagiline (R-(+)-N-propyl-1-aminoindane) is a novel irrevesible MAO-B-inhibitor, which is not metabolized to metamphetamine and/or amphetamine. The present study compared the effects of high doses of selegiline and rasagiline (10 mg/kg body weight s.c.) on MPTP-induced dopaminergic neurotoxicity in a non-human primate (Callithrix jacchus) model of PD. Groups of four monkeys were assigned to the following six experimental groups: Group I: Saline, Group II: Selegiline/Saline, Group III: Rasagiline/Saline, Group IV: MPTP/Saline, Group V: Rasagiline/MPTP, Group VI: Selegiline/MPTP. Daily treatment with MAO-B-inhibitors (either rasagiline or selegiline, 10 mg/kg body weight s.c.) was initiated four days prior to MPTP-exposure (MPTP-HCl, 2 mg/kg body weight subcutaneously, separated by an interval of 24 hours for a total of four days) and was continued until the end of the experiment, i.e. 7 days after the cessation of the MPTP-injections, when animals were sacrificed. MPTP-treatment caused distinct behavioural, histological, and biochemical alterations: 1. significant reduction of motor activity assessed by clinical rating and by computerized locomotor activity measurements; 2. substantial loss (approx. 40%) of dopaminergic (tyrosine-hydroxylase-positive) cells in the substantia nigra, pars compacta; and 3. putaminal dopamine depletion of 98% and its metabolites DOPAC (88%) and HVA (96%). Treatment with either rasagiline or selegiline markedly attenuated the neurotoxic effects of MPTP at the behavioural, histological, and at the biochemical levels. There were no significant differences between rasagiline/MPTP and selegiline/MPTP-treated animals in respect to signs of motor impairment, the number of dopaminergic cells in the substantia nigra, and striatal dopamine levels. As expected, both inhibitors decreased the metabolism of dopamine, leading to reduced levels of HVA and DOPAC (by >95% and 45% respectively). In conclusion, rasagiline and selegiline at the dosages employed equally protect against MPTP-toxicity in the common marmoset, suggesting that selegiline-derived metabolites are not important for the neuroprotective effects of high dose selegiline in the non-human MPTP-primate model in the experimental design employed. However, unexpectedly, high dose treatment with both MAO-inhibitors caused a decrease of the cell sizes of nigral tyrosine hydroxylase positive neurons. It remains to be determined, if this histological observation represents potential adverse effects of high dose treatment with monoamine oxidase inhibitors.


Brain Research | 1996

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity in non-human primates is antagonized by pretreatment with nimodipine at the nigral, but not at the striatal level

Andreas Kupsch; Jürgen Sautter; Johannes Schwarz; Peter Riederer; Manfred Gerlach; Wolfgang H. Oertel

The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been shown to induce parkinsonism in man and non-human primates. Hypotheses concerning the mechanism of action of MPTP have been related to the pathogenesis of nigral cell death in Parkinsons disease. For instance, alterations of calcium influxes have been reported to be implicated in both MPTP-induced parkinsonism and Parkinsons disease. Recently, we reported that nimodipine, a blocker of L-type calcium channels, prevents dopaminergic MPTP-induced neurotoxicity in C57B1/6 black mice. The present study extended these rodent findings to the non-human primate model of Parkinsons disease and assessed the effects of nimodipine, continuously applied by pellet for 18 days, on behavioural, biochemical and histological parameters, following systemic application of MPTP in common marmosets (Callithrix jacchus). The experimental design involved five groups of common marmosets and a total of 24 animals. Monkeys assigned to group I (n = 4) received subcutaneously implanted vehicle pellets 7 days prior to subcutaneous saline injections (control). Monkeys of group II (n = 4) were treated with nimodipine pellets (80 mg) and saline injections. Marmosets in group III (n = 8) were treated with vehicle pellets and received 4 times MPTP (MPTP-HCl, 2 mg/kg body weight subcutaneously, separated by an interval of 24 h for a total of 4 days). Monkeys in group IV (n = 4) and V (n = 4) were treated as group-III animals except for the implantation of nimodipine pellets (80 mg and 120 mg, respectively) 7 days prior to toxin exposure. In common marmosets MPTP induced severe parkinsonian symptoms, a pronounced dopamine depletion in the caudate-putamen (more than 99% of control) and a loss of tyrosine hydroxylase immunoreactive cells in the substantia nigra (50% percent of control) 7 days after MPTP-administration. Pretreatment with nimodipine (120 mg pellets) did neither attenuate the behavioural impairments in MPTP-treated animals nor antagonize the striatal neurotoxin-induced dopamine depletion, but almost completely prevented (in a dose-dependent manner) the MPTP-induced decrease of nigral tyrosine hydroxylase immunoreactive cells. These data suggest that application of nimodipine, during the observation period of 7 days, protects against MPTP-induced neurotoxicity in common marmosets at the cellular nigral level, but not at the synaptic striatal level, implicating differential mechanisms of actions of MPTP-induced neurotoxicity at the nigral versus the striatal level.


Experimental Brain Research | 1992

Cryopreservation, survival and function of intrastriatal fetal mesencephalic grafts in a rat model of Parkinson's disease

Hansjorg Sauer; E. M. Frodl; Andreas Kupsch; G. ten Bruggencate; Wolfgang H. Oertel

SummaryIn the present study we quantitatively assessed to what extent freeze-storage at liquid nitrogen temperature influences the survival and function of fetal mesencephalic grafts in the dopamine-depleted rat striatum. Ventral mesencephalic (VM) tissue was dissected from rat fetuses and stored overnight in a preservative medium at 4 °C (hibernation). It was grafted intrastriatally either as a fresh cell suspension or was frozen as tissue fragments or as a cell suspension after stepwise incubation in ascending concentrations of dimethyl-sulphoxide. Following a cryopreservation interval of 80 days in liquid nitrogen, the frozen samples were rapidly thawed, rinsed, and grafted. Cellular viabilities of graft cell suspensions, as assessed by ethidium bromide/acridine orange staining, were decreased from 90% in fresh tissue to 38-35% in frozen and thawed tissue. Amphetamine-induced turning behavior at 6 weeks post-grafting was significantly attenuated in hosts that had received fresh grafts or grafts that were frozen as tissue fragments. Tyrosine hydroxylase-(TH-) immunocytochemistry of recipient brains revealed significant decreases in TH-positive graft cell numbers in rats grafted with cryopreserved tissue (38–42% of fresh tissue). Moreover, the dye exclusion viability of thawed VM tissue was found to accurately predict the subsequent graft survival. There was no difference with respect to graft cell numbers between the two freezing methods employed, though block storage seems to be more simple from a practical point of view. The present study indicates that freezing in liquid nitrogen may be a feasible method for long-term storage of fetal neural tissue for grafting, although a marked decrease in graft survival and function of cryopreserved tissue must be taken into account.


Brain Research | 1994

Human embryonic dopamine neurons xenografted to the rat: effects of cryopreservation and varying regional source of donor cells on transplant survival, morphology and function.

Eva M. Frodl; Wei-Ming Duan; Hansjo¨rg Sauer; Andreas Kupsch; Patrik Brundin

When grafting human mesencephalic tissue to patients suffering from Parkinsons disease, the number of surviving dopamine (DA) neurons in the graft is probably crucial. It may be possible to increase the number of DA neurons available for grafting to a patient by pooling tissue from many human embryos collected over several days or by obtaining more DA neurons from each embryo. We have addressed these issues by cryopreserving human mesencephalic DA neurons prior to transplantation and also by grafting human embryonic diencephalic DA neurons. The effects of cryopreservation were assessed 4-15 weeks after xenografting ventral mesencephalic tissue into the DA-depleted striatum of immunosuppressed rats with unilateral 6-hydroxydopamine lesions of the mesostriatal pathway. Control rats grafted with fresh mesencephalic tissue displayed robust reductions in amphetamine-induced turning following transplantation. Functional effects of the cryopreserved mesencephalic grafts were only observed in the one rat out of nine which contained the largest graft in this group. The number of tyrosine hydroxylase immunoreactive neurons in animals transplanted with cryopreserved tissue was significantly reduced to 9% of fresh tissue control grafts. Morphological analysis showed that cryopreserved DA neurons were approximately 22% and 28% smaller regarding the length of the long and short axis, respectively, when compared to the neurons found in fresh grafts. In the second part of the study, the survival and function of human embryonic diencephalic DA neurons were examined following xenografting into the DA-depleted rat striatum. A reduction of motor asymmetry was observed in two out of seven diencephalon-grafted rats. This finding was consistent with a good graft survival in these particular rats, which both contained large grafts rich in tyrosine hydroxylase immunoreactive neurons. Moreover, there was immunopositive staining for graft-derived fibers in the rat striatum containing tyrosine hydroxylase and human neurofilament, both in rats grafted with mesencephalic and diencephalic DA neurons. These findings suggest that cryopreservation, using the current technique, is not a suitable storage method for use in clinical trials of DA neuron grafting in Parkinsons disease. On the other hand, the application of alternative sources of DA neurons may in the future develop into a strategy which can increase the number of neurons obtainable from each human embryo.


Brain Research | 1992

Do NMDA receptor antagonists protect against MPTP-toxicity? Biochemical and immunocytochemical analyses in black mice

Andreas Kupsch; Peter-Andreas Löschmann; Hansjorg Sauer; Guy Arnold; Petra Renner; Doris Pufal; Matthias Burg; Helmut Wachtel; Gerrit ten Bruggencate; Wolfgang H. Oertel

We investigated whether excitatory amino acids acting at the N-methyl-D-aspartate (NMDA) subtype of the L-glutamate receptor contribute to the dopaminergic neurotoxicity induced by systemic administration of the Parkinsons syndrome-inducing toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in C57Bl/6 mice. The MPTP-regimen chosen (30-40 mg/kg body weight subcutaneously) resulted a 60-70% depletion of striatal dopamine (DA) content and a 20% reduction of tyrosine hydroxylase immunoreactive (TH-IR) cells in the substantia nigra pars compacta 20 days after administration. Repeated systemic coadministration of the non-competitive NMDA receptor antagonist MK-801 or of the novel competitive NMDA receptor antagonist CGP 40116 did not protect against MPTP-induced striatal DA depletion 20 days after toxin administration. Additionally, no short-term protective effects of MK-801 on striatal DA content were observed 24, 48, and 96 h, respectively, after exposure to MPTP. A slight and non-significant attenuation (approximately 10%) of the MPTP-induced decrease in the number of nigral TH-IR cells was observed after MK-801- and CGP 40116-treatment. We conclude that neurotoxicity of systemically administered MPTP is not substantially antagonized by NMDA receptor antagonists in mice.


Experimental Brain Research | 1996

Foetal nigral cell suspension grafts influence dopamine release in the non-grafted side in the 6-hydroxydopamine rat model of Parkinson's disease: in vivo voltammetric data

Christopher D. Earl; T. Reum; J.-X. Xie; Jürgen Sautter; Andreas Kupsch; Wolfgang H. Oertel; Rudolf Morgenstern

The present study employed differential-pulse voltammetry to assess the influence of foetal ventral mesencephalic grafts on dopamine overflow in the contralateral caudate putamen of the 6-hydroxydopamine rat model of Parkinsons disease. The experimental design involved measurements of dopamine overflow in the grafted and contralateral striatum. Control measurements of dopamine overflow were performed in 6-hydroxydopamine-lesioned rats only and the caudate putamen of normal control rats. Cell suspensions of foetal rat ventral mesencephalic tissue were grafted into the dopamine-depleted caudate putamen of unilaterally 6-hydroxydopamine-lesioned rats. At 6 weeks, animals with functional, mature grafts (as assessed by amphetamine-amplified behavioural asymmetry), were pretreated with pargyline (75 mg/kg i.p.), and both striatal sides were monitored for dopamine overflow for 90 min following amphetamine sulphate administration (5 mg/kg i.p.). The time course of dopamine overflow inside the graft was similar to that in the contralateral caudate putamen of the same animal, the normal control animal and the contralateral caudate putamen of 6-hydroxydopamine-lesioned animals. However, in grafted animals the mean dopamine overflow detected in the contralateral caudate putamen was approximately 34% lower than the concentration of dopamine detected in the contralateral caudate putamen of 6-hydroxydopamine-lesioned control animals and approximately 39% lower than the concentration of dopamine detected in the caudate putamen of the normal control animal. There was no statistical difference in the concentration of amphetamine-induced dopamine overflow between the caudate putamen contralateral to the 6-hydroxydopamine lesion and the caudate putamen of the normal control animal. These data suggest that intrastriatal foetal ventral mesencephalic suspension grafts reduce amphetamine-induced dopamine release in the contralateral non-grafted caudate putamen.


Neurochemistry International | 1996

Acute MPTP treatment produces no changes in mitochondrial complex activities and indices of oxidative damage in the common marmoset ex vivo one week after exposure to the toxin

M. Gerlach; Mario E. Götz; A. Dirr; Andreas Kupsch; B. Janetzky; Wolfgang H. Oertel; Jürgen Sautter; Johannes Schwarz; Heinz Reichmann; Peter Riederer

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been shown to cause a Parkinsonian syndrome in man and non-human primates. Hypotheses concerning the pathogenetic mechanisms of MPTP toxicity on nigro-striatal dopaminergic neurons relate to impairment of mitochondrial function and oxidative stress. However, surprisingly few primate studies addressed these issues ex vivo. Thus, the present study assessed the enzyme activities of the respiratory chain, GSH/GSSG and ubiquinol/ubiquinone content in the MPTP primate model (common marmoset, Callithrix jacchus; 2 mg MPTP-hydrochloride/kg body wt were injected subcutaneously (s.c.) on four consecutive days; animals were sacrificed 7 days after last MPTP exposure). Activities of respiratory chain enzymes were measured in crude homogenates of the caudate nucleus, because the probable toxic metabolite of MPTP, MPP+, is transported into dopaminergic neurons via the dopamine uptake system in striatal synapses and mitochondria are concentrated in axonal terminals. Since MPP+ can damage membranes of axonal terminals of nigro-striatal neurons we measured GSH/GSSG contents in the putamen and ubiquinol/ubiquinone concentrations in the substantia nigra and putamen as indices of oxidative damage. At the time of sacrifice MPTP-induced deficits comprised severe behavioural Parkinsonian symptoms, profound depletion of striatal dopamine and its major metabolites as well as pronounced loss of nigro-striatal neurons. Despite these severe lesions, acute MPTP treatment had no effect on any of the enzymes of the respiratory chain in the caudate nucleus and indices of oxidative damage in both the substantia nigra and putamen. These results suggest that factors other than mitochondrial impairment and/or oxidative stress may be involved in MPTP neurotoxicity in primates. Alternatively, early compensatory mechanisms and/or transient effects could account for the reported results and will be discussed.


Journal of Neural Transmission-supplement | 1998

Chronic TVP-1012 (rasagiline) dose--activity response of monoamine oxidases A and B in the brain of the common marmoset.

Mario E. Götz; W. Breithaupt; Jürgen Sautter; Andreas Kupsch; Johannes Schwarz; Wolfgang H. Oertel; Moussa B. H. Youdim; Peter Riederer; M. Gerlach

The stereospecific form of the known acetylenic mechanism-based MAO-inhibitor AGN1135 (Rasagiline, TVP-1012) is devoid of sympathomimetic amphetamine-like properties. To evaluate the efficiency and selectivity of subcutaneous injections of TVP-1012 (dose range from 0.01 up to 10 mg/kg for 7 days) the activities of monoamine oxidases A and B (MAO-A,-B) were determined in different brain regions of the common marmoset. At a dose of 0.1 mg/kg TVP-1012, almost 80% of MAO-B activity is inhibited in all brain regions investigated (prefrontal and occipital cortex, cerebellum, caudate nucleus, putamen, nucleus accumbens). In contrast, MAO-A is not inhibited in putamen and nucleus accumbens. However, by increasing the TVP-1012 dose to 0.5 mg/kg, MAO-A is inhibited to a significant extent as well, concomitant to total inhibition of MAO-B. The results obtained indicate that TVP-1012 irreversibly inhibits both types of MAO in the common marmoset with selectivity for MAO-B at doses less than 0.5 mg/kg. TVP-1012 could be useful in studies requiring selective MAO-B inhibition without concomitant sympathomimetic amphetamine-like effects and could thus be of therapeutic interest for Parkinsons disease and retarded depression.


Journal of Neuroscience Methods | 1996

Methylcellulose during cryopreservation of ventral mesencephalic tissue fragments fails to improve survival and function of cell suspension grafts

Jürgen Sautter; Sabine Strecker; Andreas Kupsch; Wolfgang H. Oertel

Cryopreservation may allow long-term storage of fetal ventral mesencephalon (VM) for transplantation in patients suffering from Parkinsons disease (PD). We investigated whether the polymer methylcellulose protects fetal rat VM during cryopreservation in liquid nitrogen and improves survival and function of this tissue as intrastriatal suspension grafts in the 6-hydroxydopamine (6-OHDA) rat model. VM tissue fragments (E14-E15) were either immediately dissociated and grafted as a cell suspension (FRESH) or cryopreserved under controlled conditions for 7 days in a conventional cryoprotective medium (CRYO) or a medium containing 0.1% methylcellulose (mCRYO) and then dissociated and grafted. Rats from the cryo-groups showed only limited behavioral compensation in contrast to complete compensation observed in rats from the FRESH group. Cryopreservation of fetal rat VM decreased the viability of cell suspensions in vitro to about 70%, survival of grafted tyrosine hydroxylase-immunoreactive (TH-IR) neurons to 11% and 20%, and transplant volume to 8% and 17% (mCRYO and CRYO, respectively, compared to FRESH). The addition of 0.1% methylcellulose to tissue fragments during freezing did neither improve in vitro viability nor survival of TH-IR neurons nor behavioral compensation when compared to the control CRYO group. These results suggest that methylcellulose failed to improve survival of cryopreserved dopaminergic ventral mesencephalic neurons.


Life Sciences | 1994

Neural transplantation, trophic factors and Parkinson's disease

Andreas Kupsch; Wolfgang H. Oertel

Part 1 of this update on new restorative therapeutic strategies against Parkinsonss disease focuses on transplantation of dopamine-secreting tissue. Special emphasis is put on clinical trials with fetal mesencephalic cells. Problems and potential alternative approaches are discussed. Part 2 emphasizes progress in the related field of neurotrophic factors for dopaminergic midbrain neurons.

Collaboration


Dive into the Andreas Kupsch's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rudolf Morgenstern

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar

C. Oset

University of Navarra

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge