Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andreas Leffler is active.

Publication


Featured researches published by Andreas Leffler.


Nature Communications | 2014

H2S and NO cooperatively regulate vascular tone by activating a neuroendocrine HNO-TRPA1-CGRP signalling pathway.

Mirjam Eberhardt; Mária Dux; Barbara Namer; Jan Lj. Miljkovic; Nada Cordasic; Christine Will; Tatjana I. Kichko; Michael J. M. Fischer; Sebastián A. Suárez; Damian Bikiel; Karola Dorsch; Andreas Leffler; Alexandru Babes; Angelika Lampert; Jochen K. Lennerz; Johannes Jacobi; Marcelo A. Martí; Fabio Doctorovich; Edward D. Högestätt; Peter M. Zygmunt; Ivana Ivanović-Burmazović; Karl Messlinger; Peter W. Reeh; Milos R. Filipovic

Nitroxyl (HNO) is a redox sibling of nitric oxide (NO) that targets distinct signalling pathways with pharmacological endpoints of high significance in the treatment of heart failure. Beneficial HNO effects depend, in part, on its ability to release calcitonin gene-related peptide (CGRP) through an unidentified mechanism. Here we propose that HNO is generated as a result of the reaction of the two gasotransmitters NO and H2S. We show that H2S and NO production colocalizes with transient receptor potential channel A1 (TRPA1), and that HNO activates the sensory chemoreceptor channel TRPA1 via formation of amino-terminal disulphide bonds, which results in sustained calcium influx. As a consequence, CGRP is released, which induces local and systemic vasodilation. H2S-evoked vasodilatatory effects largely depend on NO production and activation of HNO–TRPA1–CGRP pathway. We propose that this neuroendocrine HNO–TRPA1–CGRP signalling pathway constitutes an essential element for the control of vascular tone throughout the cardiovascular system.


BMC Neurology | 2014

Anti-leucine rich glioma inactivated 1 protein and anti-N-methyl-D-aspartate receptor encephalitis show distinct patterns of brain glucose metabolism in 18F-fluoro-2-deoxy-d-glucose positron emission tomography.

Florian Wegner; Florian Wilke; Peter Raab; Said Ben Tayeb; Anna-Lena Boeck; Cathleen Haense; Corinna Trebst; Elke Voss; Christoph Schrader; Frank Logemann; Jörg Ahrens; Andreas Leffler; Rea Rodriguez-Raecke; Reinhard Dengler; Lilli Geworski; Frank M. Bengel; Georg Berding; Martin Stangel; Elham Nabavi

BackgroundPathogenic autoantibodies targeting the recently identified leucine rich glioma inactivated 1 protein and the subunit 1 of the N-methyl-D-aspartate receptor induce autoimmune encephalitis. A comparison of brain metabolic patterns in 18F-fluoro-2-deoxy-d-glucose positron emission tomography of anti-leucine rich glioma inactivated 1 protein and anti-N-methyl-D-aspartate receptor encephalitis patients has not been performed yet and shall be helpful in differentiating these two most common forms of autoimmune encephalitis.MethodsThe brain 18F-fluoro-2-deoxy-d-glucose uptake from whole-body positron emission tomography of six anti-N-methyl-D-aspartate receptor encephalitis patients and four patients with anti-leucine rich glioma inactivated 1 protein encephalitis admitted to Hannover Medical School between 2008 and 2012 was retrospectively analyzed and compared to matched controls.ResultsGroup analysis of anti-N-methyl-D-aspartate encephalitis patients demonstrated regionally limited hypermetabolism in frontotemporal areas contrasting an extensive hypometabolism in parietal lobes, whereas the anti-leucine rich glioma inactivated 1 protein syndrome was characterized by hypermetabolism in cerebellar, basal ganglia, occipital and precentral areas and minor frontomesial hypometabolism.ConclusionsThis retrospective 18F-fluoro-2-deoxy-d-glucose positron emission tomography study provides novel evidence for distinct brain metabolic patterns in patients with anti-leucine rich glioma inactivated 1 protein and anti-N-methyl-D-aspartate receptor encephalitis.


Scientific Reports | 2016

Human TRPA1 is a heat sensor displaying intrinsic U-shaped thermosensitivity.

Lavanya Moparthi; Tatjana I. Kichko; Mirjam Eberhardt; Edward D. Högestätt; Per Kjellbom; Urban Johanson; Peter W. Reeh; Andreas Leffler; Milos R. Filipovic; Peter M. Zygmunt

Thermosensitive Transient Receptor Potential (TRP) channels are believed to respond to either cold or heat. In the case of TRP subtype A1 (TRPA1), there seems to be a species-dependent divergence in temperature sensation as non-mammalian TRPA1 is heat-sensitive whereas mammalian TRPA1 is sensitive to cold. It has been speculated but never experimentally proven that TRPA1 and other temperature-sensitive ion channels have the inherent capability of responding to both cold and heat. Here we show that redox modification and ligands affect human TRPA1 (hTRPA1) cold and heat sensing properties in lipid bilayer and whole-cell patch-clamp recordings as well as heat-evoked TRPA1-dependent calcitonin gene-related peptide (CGRP) release from mouse trachea. Studies of purified hTRPA1 intrinsic tryptophan fluorescence, in the absence of lipid bilayer, consolidate hTRPA1 as an intrinsic bidirectional thermosensor that is modified by the redox state and ligands. Thus, the heat sensing property of TRPA1 is conserved in mammalians, in which TRPA1 may contribute to sensing warmth and uncomfortable heat in addition to noxious cold.


Journal of Biological Chemistry | 2015

Streptozotocin Stimulates the Ion Channel TRPA1 Directly INVOLVEMENT OF PEROXYNITRITE

David A. Andersson; Milos R. Filipovic; Clive Gentry; Mirjam Eberhardt; Nisha Vastani; Andreas Leffler; Peter W. Reeh; Stuart Bevan

Background: Streptozotocin produces diabetes and diabetic neuropathy in experimental animals. Results: Streptozotocin stimulates TRPA1 through oxidation of cysteine residues, which leads to acute sensory changes in vivo. Conclusion: Cysteine oxidation is a novel mechanism of action for streptozotocin. Significance: The diabetogenic agent streptozotocin induces acute sensory changes prior to the onset of diabetes. Streptozotocin (STZ)-induced diabetes is the most commonly used animal model of diabetes. Here, we have demonstrated that intraplantar injections of low dose STZ evoked acute polymodal hypersensitivities in mice. These hypersensitivities were inhibited by a TRPA1 antagonist and were absent in TRPA1-null mice. In wild type mice, systemic STZ treatment (180 mg/kg) evoked a loss of cold and mechanical sensitivity within an hour of injection, which lasted for at least 10 days. In contrast, Trpa1−/− mice developed mechanical, cold, and heat hypersensitivity 24 h after STZ. The TRPA1-dependent sensory loss produced by STZ occurs before the onset of diabetes and may thus not be readily distinguished from the similar sensory abnormalities produced by the ensuing diabetic neuropathy. In vitro, STZ activated TRPA1 in isolated sensory neurons, TRPA1 cell lines, and membrane patches. Mass spectrometry studies revealed that STZ oxidizes TRPA1 cysteines to disulfides and sulfenic acids. Furthermore, incubation of tyrosine with STZ resulted in formation of dityrosine, suggesting formation of peroxynitrite. Functional analysis of TRPA1 mutants showed that cysteine residues that were oxidized by STZ were important for TRPA1 responsiveness to STZ. Our results have identified oxidation of TRPA1 cysteine residues, most likely by peroxynitrite, as a novel mechanism of action of STZ. Direct stimulation of TRPA1 complicates the interpretation of results from STZ models of diabetic sensory neuropathy and strongly argues that more refined models of diabetic neuropathy should replace the use of STZ.


Stem Cell Research & Therapy | 2014

Functional differentiation of midbrain neurons from human cord blood-derived induced pluripotent stem cells

Nancy Stanslowsky; Alexandra Haase; Ulrich Martin; Maximilian Naujock; Andreas Leffler; Reinhard Dengler; Florian Wegner

IntroductionHuman induced pluripotent stem cells (hiPSCs) offer great promise for regenerative therapies or in vitro modelling of neurodegenerative disorders like Parkinson’s disease. Currently, widely used cell sources for the generation of hiPSCs are somatic cells obtained from aged individuals. However, a critical issue concerning the potential clinical use of these iPSCs is mutations that accumulate over lifetime and are transferred onto iPSCs during reprogramming which may influence the functionality of cells differentiated from them. The aim of our study was to establish a differentiation strategy to efficiently generate neurons including dopaminergic cells from human cord blood-derived iPSCs (hCBiPSCs) as a juvenescent cell source and prove their functional maturation in vitro.MethodsThe differentiation of hCBiPSCs was initiated by inhibition of transforming growth factor-β and bone morphogenetic protein signaling using the small molecules dorsomorphin and SB 431542 before final maturation was carried out. hCBiPSCs and differentiated neurons were characterized by immunocytochemistry and quantitative real time-polymerase chain reaction. Since functional investigations of hCBiPSC-derived neurons are indispensable prior to clinical applications, we performed detailed analysis of essential ion channel properties using whole-cell patch-clamp recordings and calcium imaging.ResultsA Sox1 and Pax6 positive neuronal progenitor cell population was efficiently induced from hCBiPSCs using a newly established differentiation protocol. Neuronal progenitor cells could be further maturated into dopaminergic neurons expressing tyrosine hydroxylase, the dopamine transporter and engrailed 1. Differentiated hCBiPSCs exhibited voltage-gated ion currents, were able to fire action potentials and displayed synaptic activity indicating synapse formation. Application of the neurotransmitters GABA, glutamate and acetylcholine induced depolarizing calcium signal changes in neuronal cells providing evidence for the excitatory effects of these ligand-gated ion channels during maturation in vitro.ConclusionsThis study demonstrates for the first time that hCBiPSCs can be used as a juvenescent cell source to generate a large number of functional neurons including dopaminergic cells which may serve for the development of novel regenerative treatment strategies.


BJA: British Journal of Anaesthesia | 2015

Methadone is a local anaesthetic-like inhibitor of neuronal Na+ channels and blocks excitability of mouse peripheral nerves

Carsten Stoetzer; K. Kistner; T. Stüber; M. Wirths; V. Schulze; T. Doll; Nilufar Foadi; Florian Wegner; Jörg Ahrens; Andreas Leffler

BACKGROUNDnOpioids enhance and prolong analgesia when applied as adjuvants to local anaesthetics (LAs). A possible molecular mechanism for this property is a direct inhibition of voltage-gated Na(+) channels which was reported for some opioids. Methadone is an effective adjuvant to LA and was recently reported to inhibit cardiac Na(+) channels. Here, we explore and compare LA properties of methadone and bupivacaine on neuronal Na(+) channels, excitability of peripheral nerves, and cell viability.nnnMETHODSnEffects of methadone were explored on compound action potentials (CAP) of isolated mouse saphenous nerves. Patch clamp recordings were performed on Na(+) channels in ND7/23 cells, the α-subunits Nav1.2, Nav1.3, Nav1.7, and Nav1.8, and the hyperpolarization-activated cyclic nucleotide-gated channel 2 (HCN2). Cytotoxicity was determined using flow cytometry.nnnRESULTSnMethadone (IC50 86-119 µM) is a state-dependent and unselective blocker on Nav1.2, Nav1.3, Nav1.7, and Nav1.8 with a potency comparable with that of bupivacaine (IC50 177 µM). Both bupivacaine and methadone also inhibit C- and A-fibre CAPs in saphenous nerves in a concentration-dependent manner. Tonic block of Nav1.7 revealed a discrete stereo-selectivity with a higher potency for levomethadone than for dextromethadone. Methadone is also a weak blocker of HCN2 channels. Both methadone and bupivacaine induce a pronounced cytotoxicity at concentrations required for LA effects.nnnCONCLUSIONSnMethadone induces typical LA effects by inhibiting Na(+) channels with a potency similar to that of bupivacaine. This hitherto unknown property of methadone might contribute to its high efficacy when applied as an adjuvant to LA.


British Journal of Pharmacology | 2014

The opioid methadone induces a local anaesthetic‐like inhibition of the cardiac Na+ channel, Nav1.5

V. Schulze; Carsten Stoetzer; A O O'Reilly; E Eberhardt; Nilufar Foadi; Jörg Ahrens; Florian Wegner; A Lampert; Andreas Leffler

Treatment with methadone is associated with severe cardiac arrhythmias, a side effect that seems to result from an inhibition of cardiac hERG K+ channels. However, several other opioids are inhibitors of voltage‐gated Na+ channels. Considering the common assumption that an inhibition of the cardiac Na+ channel Nav1.5, is the primary mechanism for local anaesthetic (LA)‐induced cardiotoxicity, we hypothesized that methadone has LA‐like properties leading to a modulation of Nav1.5 channels.


Pharmacology | 2011

Defective polysialylation and sialylation induce opposite effects on gating of the skeletal Na+ channel NaV1.4 in Chinese hamster ovary cells.

Jörg Ahrens; Nilufar Foadi; Ania Eberhardt; Gertrud Haeseler; Reinhard Dengler; Andreas Leffler; Martina Mühlenhoff; Rita Gerardy-Schahn; Martin Leuwer

Polysialic acid (polySia) is a large, negatively charged homopolymer of 2,8-linked N-acetylneuraminic acid residues resulting from remodeling and extension of protein-bound sialic acid (Sia) residues and seems to have a key role in regulating neural cell development and function. The aim of this study was to explore and compare the effects of polySia and sialylation on gating of voltage-gated sodium channels. The skeletal muscle α-subunit NaV1.4 was transiently expressed in wild-type Chinese hamster ovary (CHO) cells or in mutant CHO cells with deficits in their capacity to produce sialylated or polysialylated membrane components. Expression in both mutant cell lines resulted in larger peak current amplitudes as compared to wild-type CHO cells. Loss of Sia and polySia also resulted in significant shifts of voltage-dependent activation and steady-state inactivation, however, in opposite directions. Furthermore, only the loss of Sia had a significant effect on recovery from fast inactivation. Our data demonstrate for the first time that gating of voltage-gated sodium channels seems to be differentially regulated by polySia and Sia.


Naunyn-schmiedebergs Archives of Pharmacology | 2016

Inhibition of the cardiac Na+ channel α-subunit Nav1.5 by propofol and dexmedetomidine

Carsten Stoetzer; Svenja Reuter; Thorben Doll; Nilufar Foadi; Florian Wegner; Andreas Leffler

Propofol and dexmedetomidine are very commonly used sedative agents. However, several case reports demonstrated cardiovascular adverse effects of these two sedatives. Both substances were previously demonstrated to quite potently inhibit neuronal voltage-gated Na+ channels. Thus, a possible molecular mechanism for some of their cardiac side effects is an inhibition of cardiac voltage gated Na+ channels. In this study, we therefore explored the effects of propofol and dexmedetomidine on the cardiac predominant Na+ channel α-subunit Nav1.5. Effects of propofol and dexmedetomidine were investigated on constructs of the human α-subunit Nav1.5 stably expressed in HEK-293 cells by means of whole-cell patch clamp recordings. Both agents induced a concentration-dependent tonic inhibition of Nav1.5. The calculated IC50 value for propofol was 228xa0±xa010xa0μM, and for dexmedetomidine 170xa0±xa020xa0μM. Tonic block only marginally increased on inactivated channels, and a weak use-dependent block at 10xa0Hz was observed for dexmedetomidine (16xa0±xa02xa0% by 100xa0μM). The voltage dependencies of fast and slow inactivation as well as the time course of recovery from inactivation were shifted by both propofol and dexmedetomidine. Propofol (IC50 126xa0±xa047xa0μM) and dexmedetomidine (IC50 182xa0±xa027xa0μM) blocked the persistent sodium current induced by veratradine. Finally, the local-anesthetic (LA)-insensitive mutant Nav1.5-F1760A exhibited reduced tonic and use-dependent block by both substances. Dexmedetomidine was generally more potent as compared to propofol. Propofol and dexmedetomidine seem to interact with the LA-binding site to inhibit the cardiac Na+ channel Nav1.5 in a state-dependent manner. These data suggest that Nav1.5 is a hitherto unrecognized molecular component of some cardiovascular side effects of these sedative agents.


PLOS ONE | 2012

Differentiated Human Midbrain-Derived Neural Progenitor Cells Express Excitatory Strychnine-Sensitive Glycine Receptors Containing α2β Subunits

Florian Wegner; Robert Kraft; Kathy Busse; Wolfgang Härtig; Jörg Ahrens; Andreas Leffler; Reinhard Dengler; Johannes Schwarz

Background Human fetal midbrain-derived neural progenitor cells (NPCs) may deliver a tissue source for drug screening and regenerative cell therapy to treat Parkinson’s disease. While glutamate and GABAA receptors play an important role in neurogenesis, the involvement of glycine receptors during human neurogenesis and dopaminergic differentiation as well as their molecular and functional characteristics in NPCs are largely unknown. Methodology/Principal Findings Here we investigated NPCs in respect to their glycine receptor function and subunit expression using electrophysiology, calcium imaging, immunocytochemistry, and quantitative real-time PCR. Whole-cell recordings demonstrate the ability of NPCs to express functional strychnine-sensitive glycine receptors after differentiation for 3 weeks in vitro. Pharmacological and molecular analyses indicate a predominance of glycine receptor heteromers containing α2β subunits. Intracellular calcium measurements of differentiated NPCs suggest that glycine evokes depolarisations mediated by strychnine-sensitive glycine receptors and not by D-serine-sensitive excitatory glycine receptors. Culturing NPCs with additional glycine, the glycine-receptor antagonist strychnine, or the Na+-K+-Cl− co-transporter 1 (NKCC1)-inhibitor bumetanide did not significantly influence cell proliferation and differentiation in vitro. Conclusions/Significance These data indicate that NPCs derived from human fetal midbrain tissue acquire essential glycine receptor properties during neuronal maturation. However, glycine receptors seem to have a limited functional impact on neurogenesis and dopaminergic differentiation of NPCs in vitro.

Collaboration


Dive into the Andreas Leffler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jörg Ahrens

Hannover Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter W. Reeh

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thorben Doll

Hannover Medical School

View shared research outputs
Researchain Logo
Decentralizing Knowledge