Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andreas Lingel is active.

Publication


Featured researches published by Andreas Lingel.


Nature Chemical Biology | 2017

An allosteric PRC2 inhibitor targeting the H3K27me3 binding pocket of EED

Wei Qi; Kehao Zhao; Justin Gu; Ying Huang; Youzhen Wang; Hailong Zhang; Man Zhang; Jeff Zhang; Zhengtian Yu; Ling Li; Lin Teng; Shannon Chuai; Chao Zhang; Mengxi Zhao; HoMan Chan; Zijun Chen; Douglas D. Fang; Qi Fei; Leying Feng; Lijian Feng; Yuan Gao; Hui Ge; Xinjian Ge; Guobin Li; Andreas Lingel; Ying Lin; Yueqin Liu; Fangjun Luo; Minlong Shi; Long Wang

Polycomb repressive complex 2 (PRC2) consists of three core subunits, EZH2, EED and SUZ12, and plays pivotal roles in transcriptional regulation. The catalytic subunit EZH2 methylates histone H3 lysine 27 (H3K27), and its activity is further enhanced by the binding of EED to trimethylated H3K27 (H3K27me3). Small-molecule inhibitors that compete with the cofactor S-adenosylmethionine (SAM) have been reported. Here we report the discovery of EED226, a potent and selective PRC2 inhibitor that directly binds to the H3K27me3 binding pocket of EED. EED226 induces a conformational change upon binding EED, leading to loss of PRC2 activity. EED226 shows similar activity to SAM-competitive inhibitors in blocking H3K27 methylation of PRC2 target genes and inducing regression of human lymphoma xenograft tumors. Interestingly, EED226 also effectively inhibits PRC2 containing a mutant EZH2 protein resistant to SAM-competitive inhibitors. Together, we show that EED226 inhibits PRC2 activity via an allosteric mechanism and offers an opportunity for treatment of PRC2-dependent cancers.


Journal of Medicinal Chemistry | 2017

Discovery of First-in-Class, Potent, and Orally Bioavailable Embryonic Ectoderm Development (EED) Inhibitor with Robust Anticancer Efficacy

Ying Huang; Jeff Zhang; Zhengtian Yu; Hailong Zhang; Youzhen Wang; Andreas Lingel; Wei Qi; X. Justin Gu; Kehao Zhao; Michael Shultz; Long Wang; Xingnian Fu; Yongfeng Sun; Qiong Zhang; Xiangqing Jiang; Jiang-wei Zhang; Chunye Zhang; Ling Li; Jue Zeng; Lijian Feng; Chao Zhang; Yueqin Liu; Man Zhang; Lijun Zhang; Mengxi Zhao; Zhenting Gao; Xianghui Liu; Douglas D. Fang; Haibing Guo; Yuan Mi

Overexpression and somatic heterozygous mutations of EZH2, the catalytic subunit of polycomb repressive complex 2 (PRC2), are associated with several tumor types. EZH2 inhibitor, EPZ-6438 (tazemetostat), demonstrated clinical efficacy in patients with acceptable safety profile as monotherapy. EED, another subunit of PRC2 complex, is essential for its histone methyltransferase activity through direct binding to trimethylated lysine 27 on histone 3 (H3K27Me3). Herein we disclose the discovery of a first-in-class potent, selective, and orally bioavailable EED inhibitor compound 43 (EED226). Guided by X-ray crystallography, compound 43 was discovered by fragmentation and regrowth of compound 7, a PRC2 HTS hit that directly binds EED. The ensuing scaffold hopping followed by multiparameter optimization led to the discovery of 43. Compound 43 induces robust and sustained tumor regression in EZH2MUT preclinical DLBCL model. For the first time we demonstrate that specific and direct inhibition of EED can be effective as an anticancer strategy.


Journal of Medicinal Chemistry | 2017

Structure-Guided Design of EED Binders Allosterically Inhibiting the Epigenetic Polycomb Repressive Complex 2 (PRC2) Methyltransferase

Andreas Lingel; Martin Sendzik; Ying Huang; Michael Shultz; John Cantwell; Michael Patrick Dillon; Xingnian Fu; John Fuller; Tobias Gabriel; Justin Gu; Xiangqing Jiang; Ling Li; Fang Liang; Maureen Mckenna; Wei Qi; Weijun Rao; Xijun Sheng; Wei Shu; James C. Sutton; Benjamin Taft; Long Wang; Jue Zeng; Hailong Zhang; Maya Zhang; Kehao Zhao; Mika Lindvall; Dirksen E. Bussiere

PRC2 is a multisubunit methyltransferase involved in epigenetic regulation of early embryonic development and cell growth. The catalytic subunit EZH2 methylates primarily lysine 27 of histone H3, leading to chromatin compaction and repression of tumor suppressor genes. Inhibiting this activity by small molecules targeting EZH2 was shown to result in antitumor efficacy. Here, we describe the optimization of a chemical series representing a new class of PRC2 inhibitors which acts allosterically via the trimethyllysine pocket of the noncatalytic EED subunit. Deconstruction of a larger and complex screening hit to a simple fragment-sized molecule followed by structure-guided regrowth and careful property modulation were employed to yield compounds which achieve submicromolar inhibition in functional assays and cellular activity. The resulting molecules can serve as a simplified entry point for lead optimization and can be utilized to study this new mechanism of PRC2 inhibition and the associated biology in detail.


PLOS ONE | 2017

Discovery and Molecular Basis of a Diverse Set of Polycomb Repressive Complex 2 Inhibitors Recognition by EED

Ling Li; Hailong Zhang; Man Zhang; Mengxi Zhao; Lijian Feng; Xiao Luo; Zhenting Gao; Ying Huang; Ophelia Ardayfio; Ji-Hu Zhang; Ying Lin; Hong Fan; Yuan Mi; Guobin Li; Lei Liu; Leying Feng; Fangjun Luo; Lin Teng; Wei Qi; Johannes Ottl; Andreas Lingel; Dirksen E. Bussiere; Zhengtian Yu; Peter Atadja; Chris Lu; En Li; Justin Gu; Kehao Zhao

Polycomb repressive complex 2 (PRC2), a histone H3 lysine 27 methyltransferase, plays a key role in gene regulation and is a known epigenetics drug target for cancer therapy. The WD40 domain-containing protein EED is the regulatory subunit of PRC2. It binds to the tri-methylated lysine 27 of the histone H3 (H3K27me3), and through which stimulates the activity of PRC2 allosterically. Recently, we disclosed a novel PRC2 inhibitor EED226 which binds to the K27me3-pocket on EED and showed strong antitumor activity in xenograft mice model. Here, we further report the identification and validation of four other EED binders along with EED162, the parental compound of EED226. The crystal structures for all these five compounds in complex with EED revealed a common deep pocket induced by the binding of this diverse set of compounds. This pocket was created after significant conformational rearrangement of the aromatic cage residues (Y365, Y148 and F97) in the H3K27me3 binding pocket of EED, the width of which was delineated by the side chains of these rearranged residues. In addition, all five compounds interact with the Arg367 at the bottom of the pocket. Each compound also displays unique features in its interaction with EED, suggesting the dynamics of the H3K27me3 pocket in accommodating the binding of different compounds. Our results provide structural insights for rational design of novel EED binder for the inhibition of PRC2 complex activity.


Journal of Medicinal Chemistry | 2016

Fast and Efficient Fragment-Based Lead Generation by Fully Automated Processing and Analysis of Ligand-Observed NMR Binding Data

Chen Peng; Alexandra Frommlet; Manuel Pérez; Carlos Cobas; Anke Blechschmidt; Santiago Dominguez; Andreas Lingel

NMR binding assays are routinely applied in hit finding and validation during early stages of drug discovery, particularly for fragment-based lead generation. To this end, compound libraries are screened by ligand-observed NMR experiments such as STD, T1ρ, and CPMG to identify molecules interacting with a target. The analysis of a high number of complex spectra is performed largely manually and therefore represents a limiting step in hit generation campaigns. Here we report a novel integrated computational procedure that processes and analyzes ligand-observed proton and fluorine NMR binding data in a fully automated fashion. A performance evaluation comparing automated and manual analysis results on (19)F- and (1)H-detected data sets shows that the program delivers robust, high-confidence hit lists in a fraction of the time needed for manual analysis and greatly facilitates visual inspection of the associated NMR spectra. These features enable considerably higher throughput, the assessment of larger libraries, and shorter turn-around times.


PLOS ONE | 2017

Inhibition of prenylated KRAS in a lipid environment

Johanna M. Jansen; Charles Wartchow; Wolfgang Jahnke; Susan Fong; Tiffany Tsang; Keith B. Pfister; Tatiana Zavorotinskaya; Dirksen E. Bussiere; Jan Marie Cheng; Kenneth Crawford; Yumin Dai; Jeffrey H. Dove; Eric Fang; Yun Feng; Jean-Michel Florent; John Fuller; Alvar D. Gossert; Mohammad Hekmat-Nejad; Chrystèle Henry; Julia Klopp; William P. Lenahan; Andreas Lingel; Sylvia Ma; Arndt Meyer; Yuji Mishina; Jamie Narberes; Gwynn Pardee; Savithri Ramurthy; Sebastien Rieffel; Darrin Stuart

RAS mutations lead to a constitutively active oncogenic protein that signals through multiple effector pathways. In this chemical biology study, we describe a novel coupled biochemical assay that measures activation of the effector BRAF by prenylated KRASG12V in a lipid-dependent manner. Using this assay, we discovered compounds that block biochemical and cellular functions of KRASG12V with low single-digit micromolar potency. We characterized the structural basis for inhibition using NMR methods and showed that the compounds stabilized the inactive conformation of KRASG12V. Determination of the biophysical affinity of binding using biolayer interferometry demonstrated that the potency of inhibition matches the affinity of binding only when KRAS is in its native state, namely post-translationally modified and in a lipid environment. The assays we describe here provide a first-time alignment across biochemical, biophysical, and cellular KRAS assays through incorporation of key physiological factors regulating RAS biology, namely a negatively charged lipid environment and prenylation, into the in vitro assays. These assays and the ligands we discovered are valuable tools for further study of KRAS inhibition and drug discovery.


Journal of the American Chemical Society | 2017

High-Confidence Protein–Ligand Complex Modeling by NMR-Guided Docking Enables Early Hit Optimization

Andrew Proudfoot; Dirksen E. Bussiere; Andreas Lingel

Structure-based drug design is an integral part of modern day drug discovery and requires detailed structural characterization of protein-ligand interactions, which is most commonly performed by X-ray crystallography. However, the success rate of generating these costructures is often variable, in particular when working with dynamic proteins or weakly binding ligands. As a result, structural information is not routinely obtained in these scenarios, and ligand optimization is challenging or not pursued at all, representing a substantial limitation in chemical scaffolds and diversity. To overcome this impediment, we have developed a robust NMR restraint guided docking protocol to generate high-quality models of protein-ligand complexes. By combining the use of highly methyl-labeled protein with experimentally determined intermolecular distances, a comprehensive set of protein-ligand distances is generated which then drives the docking process and enables the determination of the correct ligand conformation in the bound state. For the first time, the utility and performance of such a method is fully demonstrated by employing the generated models for the successful, prospective optimization of crystallographically intractable fragment hits into more potent binders.


Cancer Research | 2017

Abstract LB-288: An allosteric PRC2 inhibitor targeting the H3K27me3 binding pocket of EED

Wei Qi; Kehao Zhao; Justin Gu; Ying Huang; Youzhen Wang; Hailong Zhang; Man Zhang; Jeff Zhang; Zhengtian Yu; Ling Li; Lin Teng; Shannon Chuai; Chao Zhang; Mengxi Zhao; HoMan Chan; Zijun Chen; Douglas D. Fang; Fei Qi; Leying Feng; Lijian Feng; Yuan Gao; Hui Ge; Xinjian Ge; Andreas Lingel; Guobin Li; Ying Lin; Yueqin Liu; Fangjun Luo; Minlong Shi; Long Wang

Polycomb repressive complex 2 (PRC2) consists of three core subunits, EZH2, EED and SUZ12 and plays pivotal roles in transcriptional regulation through its histone H3K27 methyltransferase activity. Dysregulation of PRC2 is observed in multiple human cancers, for example, the catalytic subunit EZH2 is overexpressed in a wide range of human cancers and gain-of-function mutations of EZH2 within its catalytic site have been reported in human B-cell lymphoma, parathyroid carcinoma and melanoma. Small molecule inhibitors that compete with the cofactor S-adenosylmethionine (SAM) have been reported and showed anti-lymphoma efficacy in pre-clinical studies. EED within the PRC2 complex allosterically activate the enzymatic activity by binding to tri-methylated H3K27 (H3K27me3). Here we report the discovery of EED226, a potent and selective PRC2 inhibitor directly binding to the H3K27me3 binding pocket of EED. EED226 induces conformational change upon binding EED leading to loss of PRC2 activity. EED226 shows similar activity as SAM-competitive inhibitors in blocking H3K27 methylation of PRC2 target genes and inducing regression of human lymphoma xenograft tumors. Interestingly, EED226 also effectively inhibits PRC2 containing mutant EZH2 protein resistant to SAM-competitive inhibitors. Together, we show EED226 inhibits PRC2 activity via an allosteric mechanism and offers opportunity for treatment of PRC2-dependent cancers. Citation Format: Wei Qi, Kehao Zhao, Justin Gu, Ying Huang, Youzhen Wang, Hailong Zhang, Man Zhang, Jeff Zhang, Zhengtian Yu, Ling Li, Lin Teng, Shannon Chuai, Chao Zhang, Mengxi Zhao, HoMan Chan, Zijun Chen, Douglas Fang, Fei Qi, Leying Feng, Lijian Feng, Yuan Gao, Hui Ge, Xinjian Ge, Andreas Lingel, Guobin Li, Ying Lin, Yueqin Liu, Fangjun Luo, Minlong Shi, Long Wang, Zhaofu Wang, Yanyan Yu, Jue Zeng, Chenhui Zeng, Lijun Zhang, Qiong Zhang, Shaolian Zhou, Counde Oyang, Peter Atadja, En Li. An allosteric PRC2 inhibitor targeting the H3K27me3 binding pocket of EED [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr LB-288. doi:10.1158/1538-7445.AM2017-LB-288


Molecular Cancer Research | 2014

Abstract B38: Inhibiting mutated KRAS, a broken switch of effector pathways

Johanna M. Jansen; Wolfgang Jahnke; Susan Fong; Laura Tandeske; Charles Wartchow; Keith B. Pfister; Tatiana Zavorotinskaya; Anke Blechschmidt; Dirksen E. Bussiere; Yumin Dai; Jeff Dove; Eric Fang; David Farley; Jean-Michel Florent; John Fuller; Simona Gokhin; Alvar D. Gossert; Mohammad Hekmat-Nejad; Chrystèle Henry; Julia Klopp; Bill Lenahan; Andreas Lingel; Arndt Meyer; Jamie Narberes; Gwynn Pardee; C. Gregory Paris; Savithri Ramurthy; Paul A. Renhowe; Sebastien Rieffel; Kevin Shoemaker

Mutated forms of KRAS are no longer able to switch effectors between “on” and “off” states. It is known that the function of KRAS is controlled by key parts in the C-terminus, including six consecutive lysines, a terminal prenyl moiety and a terminal carboxymethyl functional group. We set out to discover compounds which would inhibit the function of mutated KRAS as an activator for effectors. This campaign yielded several compounds that blocked biochemical and cellular functions of KRAS with low micromolar activity while not affecting markers outside of KRAS pathways in cells. In order to understand the mode of binding of these compounds to KRAS, we generated different forms of the protein, including unprenylated truncated and fully processed full-length protein. NMR studies with truncated protein (amino acids 1-169) identified a site at which compound binding stabilized the inactive conformation of KRAS. This site is located adjacent to switch-II and is similar to sites described by others. The Kd determined for this binding event is almost 3 orders of magnitude higher than the IC50 and EC50 values measured in biochemical and cellular assays. In order to understand this difference, we developed a biophysical assay using the Fortebio system which enabled binding studies in a system with full-length prenylated protein in the presence of lipids, to match the context of the biochemical and cellular assays. Micromolar binding to the full-length prenylated KRAS protein was observed in the Fortebio assay and binding was not observed in the absence of prenylation, consistent with the near millimolar Kd observed by NMR for truncated KRAS. Curiously, similar micromolar binding was seen to a peptide derived from the C-terminus of KRAS (amino acids 168-185) with and without prenyl modification while related compounds that do not bind to the full-length prenylated KRAS also do not bind to these peptides. It is still unclear whether binding to the terminal peptide in lipid context is related to the binding site adjacent to switch-II. From a drug discovery perspective, it remains to be confirmed whether current inhibitors can be optimized. Citation Format: Johanna Jansen, Wolfgang Jahnke, Susan Fong, Laura Tandeske, Charles Wartchow, Keith Pfister, Tatiana Zavorotinskaya, Anke Blechschmidt, Dirksen Bussiere, Yumin Dai, Jeff Dove, Eric Fang, David Farley, Jean-Michel Florent, John Fuller, Simona Gokhin, Alvar Gossert, Mohammad Hekmat-Nejad, Chrystele Henry, Julia Klopp, Bill Lenahan, Andreas Lingel, Arndt Meyer, Jamie Narberes, Gwynn Pardee, C Gregory Paris, Savithri Ramurthy, Paul Renhowe, Sebastien Rieffel, Kevin Shoemaker, Sharadha Subramanian, Tiffany Tsang, Stephania Widger, Armin Widmer, Isabel Zaror, Stephen Hardy. Inhibiting mutated KRAS, a broken switch of effector pathways. [abstract]. In: Proceedings of the AACR Special Conference on RAS Oncogenes: From Biology to Therapy; Feb 24-27, 2014; Lake Buena Vista, FL. Philadelphia (PA): AACR; Mol Cancer Res 2014;12(12 Suppl):Abstract nr B38. doi: 10.1158/1557-3125.RASONC14-B38


Journal of Biomolecular NMR | 2016

Facilitating unambiguous NMR assignments and enabling higher probe density through selective labeling of all methyl containing amino acids.

Andrew Proudfoot; Andreas O. Frank; Fiorella Ruggiu; Mulugeta Mamo; Andreas Lingel

Collaboration


Dive into the Andreas Lingel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge