Andreas Lorke
University of Koblenz and Landau
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andreas Lorke.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Jörg Tittel; Vera Bissinger; Barbara Zippel; Ursula Gaedke; Elanor M. Bell; Andreas Lorke; Norbert Kamjunke
The majority of organisms can be grouped into those relying solely on photosynthesis (phototrophy) or those relying solely on the assimilation of organic substances (heterotrophy) to meet their requirements for energy and carbon. However, a special life history trait exists in which organisms combine both phototrophy and heterotrophy. Such “mixotrophy” is a widespread phenomenon in aquatic habitats and is observed in many protozoan and metazoan organisms. The strategy requires investment in both photosynthetic and heterotrophic cellular apparatus, and the benefits must outweigh these costs. In accordance with mechanistic resource competition theory, laboratory experiments revealed that pigmented mixotrophs combined light, mineral nutrients, and prey as substitutable resources. Thereby, they reduced prey abundance below the critical food concentration of competing specialist grazers [Rothhaupt, K. O. (1996) Ecology 77, 716–724]. Here, we demonstrate the important consequences of this strategy for an aquatic community. In the illuminated surface strata of a lake, mixotrophs reduced prey abundance steeply. The data suggest that, as a consequence, grazers from higher trophic levels, consuming both the mixotrophs and their prey, could not persist. Thus, the mixotrophs escaped from competition with and losses to higher grazers. Furthermore, the mixotrophs structured prey abundance along the vertical light gradient, creating low densities near the surface and a pronounced maximum of their algal prey at depth. Such deep algal accumulations are typical features of nutrient-poor aquatic habitats, previously explained by resource availability. We hypothesize instead that the mixotrophic grazing strategy is responsible for deep algal accumulations in many aquatic environments.
Environmental Science & Technology | 2013
Andreas Maeck; Tonya DelSontro; Daniel Frank Mcginnis; Helmut W Fischer; Sabine Flury; Mark Schmidt; Peer Fietzek; Andreas Lorke
Inland waters transport and transform substantial amounts of carbon and account for ∼18% of global methane emissions. Large reservoirs with higher areal methane release rates than natural waters contribute significantly to freshwater emissions. However, there are millions of small dams worldwide that receive and trap high loads of organic carbon and can therefore potentially emit significant amounts of methane to the atmosphere. We evaluated the effect of damming on methane emissions in a central European impounded river. Direct comparison of riverine and reservoir reaches, where sedimentation in the latter is increased due to trapping by dams, revealed that the reservoir reaches are the major source of methane emissions (∼0.23 mmol CH4 m(-2) d(-1) vs ∼19.7 mmol CH4 m(-2) d(-1), respectively) and that areal emission rates far exceed previous estimates for temperate reservoirs or rivers. We show that sediment accumulation correlates with methane production and subsequent ebullitive release rates and may therefore be an excellent proxy for estimating methane emissions from small reservoirs. Our results suggest that sedimentation-driven methane emissions from dammed river hot spot sites can potentially increase global freshwater emissions by up to 7%.
Hydrobiologia | 2008
Hilmar Hofmann; Andreas Lorke; Frank Peeters
Water-level fluctuations (WLF) of lakes have temporal scales ranging from seconds to hundreds of years. Fluctuations in the lake level generated by an unbalanced water budget resulting from meteorological and hydrological processes, such as precipitation, evaporation and inflow and outflow conditions usually have long temporal scales (days to years) and are here classified as long-term WLF. In contrast, WLF generated by hydrodynamic processes, e.g. basin-scale oscillations and travelling surface waves, have periods in the order of seconds to hours and are classified as short-term WLF. The impact of WLF on abiotic and biotic conditions depends on the temporal scale under consideration and is exemplified using data from Lake Issyk-Kul, the Caspian Sea and Lake Constance. Long-term WLF induce a slow shore line displacement of metres to kilometres, but immediate physical stress due to currents associated with long-term WLF is negligible. Large-scale shore line displacements change the habitat availability for organisms adapted to terrestrial and aquatic conditions over long time scales. Short-term WLF, in contrast, do not significantly displace the boundary between the aquatic and the terrestrial habitat, but impose short-term physical stress on organisms living in the littoral zone and on organic and inorganic particles deposited in the top sediment layers. The interaction of WLF acting on different time scales amplifies their overall impact on the ecosystem, because long-term WLF change the habitat exposed to the physical stress resulting from short-term WLF. Specifically, shore morphology and sediment grain size distribution are the result of a continuous interplay between short- and long-term WLF, the former providing the energy for erosion the latter determining the section of the shore exposed to the erosive power.
Water Resources Research | 2004
Daniel F McGinnis; Andreas Lorke; Alfred Wüest; A. Stöckli; John C. Little
A steady state bubble-plume model is evaluated using full-scale temperature, salinity, and dissolved oxygen data collected in a Swiss lake. The data revealed a plume-generated near-field environment that differed significantly from the ambient far-field water column properties. A near-field torus of reduced stratification developed around the plume, the extent of which is on the same lateral scale as the horizontal dislocations generated by persistent first-mode seiching. The plume fallback water was found to penetrate much deeper than expected, thereby maintaining reduced vertical gradients in the near-field torus. The plume entrains a portion of the fallback water leading to short-circuiting, which generates a complex plume-lake interaction and reduces far-field downwelling relative to the upward plume flow. As the integral plume model incorporates the entrainment hypothesis, it is highly sensitive to the near-field environmental conditions. After identifying appropriate near-field boundary conditions the plume model predictions agree well with the field observations.
Journal of Atmospheric and Oceanic Technology | 2005
Andreas Lorke; Alfred Wüest
This paper presents a novel approach for estimating the rate of turbulent kinetic energy dissipation from pulse-coherent acoustic Doppler current profiler (ADCP) measurements using the inertial dissipation method. Although the inertial dissipation technique is widely accepted and used in oceanographic and atmospheric research, its application to ADCP data is limited by the loss of directional information for high-wavenumber velocity fluctuations. However, measurements in the bottom boundary layer of a lake revealed astonishing agreement between dissipation rates estimated from temperature microstructure profiles and those estimated by applying the inertial dissipation method to data from two different brands of ADCPs.
Journal of Physical Oceanography | 2006
Andreas Lorke; Frank Peeters
Interfacial fluxes, that is, gas exchange at the water–atmosphere interface and benthic fluxes at the sediment–water interface, are often parameterized in terms of wind speed or turbulent friction velocity, with numerous empirical relationships obtained from individual experiments. The present study attempts to combine the general outcome of such experiments at both interfaces into a universal scaling relation for the thicknesses of the viscous and diffusive sublayers in terms of the Kolmogorov and Batchelor length scales, respectively. Transfer velocities can then be described in terms of the Schmidt number of the respective tracer and in terms of the turbulence dissipation rate. Applying law-of-the-wall scaling to convert dissipation rates into an appropriate friction velocity estimate results in a mechanistic description of the transfer velocity, which is comparable to common empirical parameterizations. It is hypothesized, however, that the dissipation rate and hence the directly estimated level of turbulence provide a more appropriate variable for the parameterization of interfacial fluxes than wind speed or turbulent friction velocity inferred from law-of-the-wall scaling.
Ecological Monographs | 2015
Franz Hölker; Michael J. Vanni; Jan J. Kuiper; Christof Meile; H. P. Grossart; Peter Stief; Rita Adrian; Andreas Lorke; Olaf Dellwig; Andreas Brand; Michael Hupfer; Wolf M. Mooij; Gunnar Nützmann; Jörg Lewandowski
There is ample evidence that tube-dwelling invertebrates such as chironomids significantly alter multiple important ecosystem functions, particularly in shallow lakes. Chironomids pump large water volumes, and associated suspended and dissolved substances, through the sediment and thereby compete with pelagic filter feeders for particulate organic matter. This can exert a high grazing pressure on phytoplankton, microorganisms, and perhaps small zooplankton and thus strengthen benthic-pelagic coupling. Furthermore, intermittent pumping by tube-dwelling invertebrates oxygenates sediments and creates a dynamic, three-dimensional mosaic of redox conditions. This shapes microbial community composition and spatial distribution, and alters microbe-mediated biogeochemical functions, which often depend on redox potential. As a result, extended hotspots of element cycling occur at the oxic-anoxic interfaces, controlling the fate of organic matter and nutrients as well as fluxes of nutrients between sediments and water. Surprisingly, the mechanisms and magnitude of interactions mediated by these organisms are still poorly understood. To provide a synthesis of the importance of tube-dwelling invertebrates, we review existing research and integrate previously disregarded functional traits into an ecosystem model. Based on existing research and our models, we conclude that tube-dwelling invertebrates play a central role in controlling water column nutrient pools, and hence water quality and trophic state. Furthermore, these tiny ecosystem engineers can influence the thresholds that determine shifts between alternate clear and turbid states of shallow lakes. The large effects stand in contrast to the conventional limnological paradigm emphasizing predominantly pelagic food webs. Given the vast number of shallow lakes worldwide, benthic invertebrates are likely to be relevant drivers of biogeochemical processes at regional and global scales, thereby mediating feedback mechanisms linked to climate change.
Oecologia | 2000
Guntram Weithoff; Andreas Lorke; Norbert Walz
Abstract Water-column mixing is known to have a decisive impact on plankton communities. The underlying mechanisms depend on the size and depth of the water body, nutrient status and the plankton community structure, and they are well understood for shallow polymictic and deep stratified lakes. Two consecutive mixing events of similar intensity under different levels of herbivory were performed in enclosures in a shallow, but periodically stratified, eutrophic lake, in order to investigate the effects of water-column mixing on bacteria abundance, phytoplankton abundance and diversity, and rotifer abundance and fecundity. When herbivory by filter-feeding zooplankton was low, water-column mixing that provoked a substantial nutrient input into the euphotic zone led to a strong net increase of bacteria and phytoplankton biomass. Phytoplankton diversity was lower in the mixed enclosures than in the undisturbed ones because of the greater contribution of a few fast-growing species. After the second mixing event, at a high biomass of filter-feeding crustaceans, the increase of phytoplankton biomass was lower than after the first mixing, and diversity remained unchanged because enhanced growth of small fast-growing phytoplankton was prevented by zooplankton grazing. Bacterial abundance did not increase after the second mixing, when cladoceran biomass was high. Changes in rotifer fecundity indicated a transmission of the phytoplankton response to the next trophic level. Our results suggest that water-column mixing in shallow eutrophic lakes with periodic stratification has a strong effect on the plankton community via enhanced nutrient availability rather than resuspension or reduced light availability. This fuels the basis of the classic and microbial food chain via enhanced phytoplankton and bacterial growth, but the effects on biomass may be damped by high levels of herbivory.
Journal of Geophysical Research | 2014
Daniel Frank Mcginnis; Stefan Sommer; Andreas Lorke; Ronnie N. Glud; Peter Linke
Continental shelves are predominately (∼70%) covered with permeable, sandy sediments. While identified as critical sites for intense oxygen, carbon, and nutrient turnover, constituent exchange across permeable sediments remains poorly quantified. The central North Sea largely consists of permeable sediments and has been identified as increasingly at risk for developing hypoxia. Therefore, we investigate the benthic O2 exchange across the permeable North Sea sediments using a combination of in situ microprofiles, a benthic chamber, and aquatic eddy correlation. Tidal bottom currents drive the variable sediment O2 penetration depth (from ∼3 to 8 mm) and the concurrent turbulence-driven 25-fold variation in the benthic sediment O2 uptake. The O2 flux and variability were reproduced using a simple 1-D model linking the benthic turbulence to the sediment pore water exchange. The high O2 flux variability results from deeper sediment O2 penetration depths and increased O2 storage during high velocities, which is then utilized during low-flow periods. The study reveals that the benthic hydrodynamics, sediment permeability, and pore water redox oscillations are all intimately linked and crucial parameters determining the oxygen availability. These parameters must all be considered when evaluating mineralization pathways of organic matter and nutrients in permeable sediments.
Science of The Total Environment | 2015
Ralf Schulz; Mirco Bundschuh; René Gergs; Carsten A. Brühl; Dörte Diehl; Martin H. Entling; Lorenz Fahse; Oliver Frör; Hermann F. Jungkunst; Andreas Lorke; Ralf B. Schäfer; Gabriele E. Schaumann; Klaus Schwenk
Terrestrial inputs into freshwater ecosystems are a classical field of environmental science. Resource fluxes (subsidy) from aquatic to terrestrial systems have been less studied, although they are of high ecological relevance particularly for the receiving ecosystem. These fluxes may, however, be impacted by anthropogenically driven alterations modifying structure and functioning of aquatic ecosystems. In this context, we reviewed the peer-reviewed literature for studies addressing the subsidy of terrestrial by aquatic ecosystems with special emphasis on the role that anthropogenic alterations play in this water-land coupling. Our analysis revealed a continuously increasing interest in the coupling of aquatic to terrestrial ecosystems between 1990 and 2014 (total: 661 studies), while the research domains focusing on abiotic (502 studies) and biotic (159 studies) processes are strongly separated. Approximately 35% (abiotic) and 25% (biotic) of the studies focused on the propagation of anthropogenic alterations from the aquatic to the terrestrial system. Among these studies, hydromorphological and hydrological alterations were predominantly assessed, whereas water pollution and invasive species were less frequently investigated. Less than 5% of these studies considered indirect effects in the terrestrial system e.g. via food web responses, as a result of anthropogenic alterations in aquatic ecosystems. Nonetheless, these very few publications indicate far-reaching consequences in the receiving terrestrial ecosystem. For example, bottom-up mediated responses via soil quality can cascade over plant communities up to the level of herbivorous arthropods, while top-down mediated responses via predatory spiders can cascade down to herbivorous arthropods and even plants. Overall, the current state of knowledge calls for an integrated assessment on how these interactions within terrestrial ecosystems are affected by propagation of aquatic ecosystem alterations. To fill these gaps, we propose a scientific framework, which considers abiotic and biotic aspects based on an interdisciplinary approach.