Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andreas P. Dahlin is active.

Publication


Featured researches published by Andreas P. Dahlin.


Analytical Chemistry | 2010

Methodological Aspects on Microdialysis Protein Sampling and Quantification in Biological Fluids: An In Vitro Study on Human Ventricular CSF

Andreas P. Dahlin; Magnus Wetterhall; Karin D. Caldwell; Anders Larsson; Jonas Bergquist; Klas Hjort

There is growing interest in sampling of protein biomarkers from the interstitial compartment of the brain and other organs using high molecular cutoff membrane microdialysis (MD) catheters. However, recent data suggest that protein sampling across such MD membranes is a highly complex process that needs to be further studied. Here, we report three major improvements for microdialysis sampling of proteins in complex biological matrixes. The improvements in this in vitro study using human ventricular cerebrospinal fluid as the sample matrix include increased fluid recovery control, decreased protein adsorption on the microdialysis membrane and materials, and novel quantitative mass spectrometry analysis. Dextrans in different concentrations and sizes were added to the perfusion fluid. It was found that dextrans with molecular mass 250 and 500 kDa provided a fluid recovery close to 100%. An improved fluid recovery precision could be obtained by self-assembly triblock polymer surface modification of the MD catheters. The modified catheters also delivered a significantly increased extraction efficiency for some of the investigated proteins. The final improvement was to analyze the dialysates with isobaric tagged (iTRAQ) proteomics, followed by tandem mass spectrometric analysis. By using this technique, 48 proteins could be quantified and analyzed with respect to their extraction efficiencies. The novel aspects of microdialysis protein sampling, detection, and quantification in biological fluids presented in this study should be considered as a first step toward better understanding and handling of the challenges associated with microdialysis sampling of proteins. The next step is to optimize the developed methodology in vivo.


Analytical Chemistry | 2014

Refined Microdialysis Method for Protein Biomarker Sampling in Acute Brain Injury in the Neurointensive Care Setting

Andreas P. Dahlin; Karlis Purins; Fredrik Clausen; Jiangtao Chu; Amir Sedigh; Tomas Lorant; Per Enblad; Anders Lewén

There is growing interest in cerebral microdialysis (MD) for sampling of protein biomarkers in neurointensive care (NIC) patients. Published data point to inherent problems with this methodology including protein interaction and biofouling leading to unstable catheter performance. This study tested the in vivo performance of a refined MD method including catheter surface modification, for protein biomarker sampling in a clinically relevant porcine brain injury model. Seven pigs of both sexes (10-12 weeks old; 22.2-27.3 kg) were included. Mean arterial blood pressure, heart rate, intracranial pressure (ICP) and cerebral perfusion pressure was recorded during the stepwise elevation of intracranial pressure by inflation of an epidural balloon catheter with saline (1 mL/20 min) until brain death. One naïve MD catheter and one surface modified with Pluronic F-127 (10 mm membrane, 100 kDa molecular weight cutoff MD catheter) were inserted into the right frontal cortex and perfused with mock CSF with 3% Dextran 500 at a flow rate of 1.0 μL/min and 20 min sample collection. Naïve catheters showed unstable fluid recovery, sensitive to ICP changes, which was significantly stabilized by surface modification. Three of seven naïve catheters failed to deliver a stable fluid recovery. MD levels of glucose, lactate, pyruvate, glutamate, glycerol and urea measured enzymatically showed an expected gradual ischemic and cellular distress response to the intervention without differences between naïve and surface modified catheters. The 17 most common proteins quantified by iTRAQ and nanoflow LC-MS/MS were used as biomarker models. These proteins showed a significantly more homogeneous response to the ICP intervention in surface modified compared to naïve MD catheters with improved extraction efficiency for most of the proteins. The refined MD method appears to improve the accuracy and precision of protein biomarker sampling in the NIC setting.


Frontiers in Neurology | 2014

Cerebral microdialysis for protein biomarker monitoring in the neurointensive care setting - a technical approach

Andreas P. Dahlin; Fredrik Clausen; Jiangtao Chu; Jonas Bergquist; Klas Hjort; Per Enblad; Anders Lewén

Cerebral microdialysis (MD) was introduced as a neurochemical monitoring method in the early 1990s and is currently widely used for the sampling of low molecular weight molecules, signaling energy crisis, and cellular distress in the neurointensive care (NIC) setting. There is a growing interest in MD for harvesting of intracerebral protein biomarkers of secondary injury mechanisms in acute traumatic and neurovascular brain injury in the NIC community. The initial enthusiasm over the opportunity to sample protein biomarkers with high molecular weight cut-off MD catheters has dampened somewhat with the emerging realization of inherent methodological problems including protein–protein interaction, protein adhesion, and biofouling, causing an unstable in vivo performance (i.e., fluid recovery and extraction efficiency) of the MD catheter. This review will focus on the results of a multidisciplinary collaborative effort, within the Uppsala Berzelii Centre for Neurodiagnostics during the past several years, to study the features of the complex process of high molecular weight cut-off MD for protein biomarkers. This research has led to new methodology showing robust in vivo performance with optimized fluid recovery and improved extraction efficiency, allowing for more accurate biomarker monitoring. In combination with evolving analytical methodology allowing for multiplex biomarker analysis in ultra-small MD samples, a new opportunity opens up for high-resolution temporal mapping of secondary injury cascades, such as neuroinflammation and other cell injury reactions directly in the injured human brain. Such data may provide an important basis for improved characterization of complex injuries, e.g., traumatic and neurovascular brain injury, and help in defining targets and treatment windows for neuroprotective drug development.


European Journal of Pharmaceutical Sciences | 2014

Identification of human cerebrospinal fluid proteins and their distribution in an in vitro microdialysis sampling system.

Magnus Wetterhall; Jonas Bergquist; Klas Hjort; Andreas P. Dahlin

A qualitative study is presented on how proteins from a complex biological sample are distributed in a microdialysis sample system. A comparison between proteins identified in the human ventricular cerebrospinal fluid (CSF) sample, the collected dialysate and the proteins adsorbed onto the membrane was conducted. The microdialysis experiment was performed in vitro at 37°C for the duration of 24h. Thereafter, the membranes were removed from the catheter and the adsorbed proteins were tryptically digested using the on-surface enzymatic digestion (oSED) protocol. The CSF samples and the dialysates were digested using a standard in-solution trypsin digestion protocol. In the final phase, the samples were analysed using nano-liquid chromatography in combination with tandem mass spectrometry. In the four sample compartments analysed (CSF start, Membrane, Dialysate, CSF end) a total of 134 different proteins were found. However, most of the identified proteins (n=87) were uniquely found in one sample compartment only. Common CSF proteins such as albumin, apolipoproteins and cystatin C together with plasma proteins such as hemoglobin and fibrinogen were among the 11 proteins that were found in all samples. These proteins are present in high concentrations in CSF, which means that they effectively block out the detection signal of less abundant proteins. Therefore, only 25% of the proteins adsorbed onto the membrane were detected in the CSF compared with the dialysate that shared 44% of its proteins with the CSF. The proteins adsorbed onto the membrane were significantly more hydrophobic, had a lower instability index and more thermostable compared to the proteins in the CSF and the dialysate. The results suggest that proteins adsorbed onto the microdialysis membranes may escape detection because they are prevented from passing the membrane into the dialysate. Thus, the membrane needs to be examined after sample collection in order to better verify the protein content in the original sample. This is particularly important when searching for new protein biomarkers for neurodegenerative diseases.


Biomedical Microdevices | 2014

Impact of static pressure on transmembrane fluid exchange in high molecular weight cut off microdialysis

Jiangtao Chu; Klas Hjort; Anders Larsson; Andreas P. Dahlin

With the interest of studying larger biomolecules by microdialysis (MD), this sampling technique has reached into the ultrafiltration region of fluid exchange, where fluid recovery (FR) has a strong dependence on pressure. Hence in this study, we focus on the fluid exchange across the high molecular weight cut off MD membrane under the influence of the static pressure in the sampling environment. A theoretical model is presented for MD with such membranes, where FR has a linear dependence upon the static pressure of the sample. Transmembrane (TM) osmotic pressure difference and MD perfusion rate decide how fast FR increases with increased static pressure. A test chamber for in vitro MD under static pressure was constructed and validated. It can hold four MD probes under controlled pressurized conditions. Comparison showed good agreement between experiment and theory. Moreover, test results showed that the fluid recovery of the test chamber MD can be set accurately via the chamber pressure, which is controlled by sample injection into the chamber at precise rate. This in vitro system is designed for modelling in vivo MD in cerebrospinal fluid and studies with biological samples in this system may be good models for in vivo MD.


Future Science OA | 2015

MS for investigation of time-dependent protein adsorption on surfaces in complex biological samples

Torgny Undin; Sara Bergström Lind; Andreas P. Dahlin

Aim: This study aims at developing a nondestructive way for investigating protein adsorption on surfaces such as biomaterials using mass spectrometry. Methods: Ventricular cerebrospinal fluid in contact with poly carbonate membranes were used as adsorption templates and on-surface enzymatic digestion was applied to desorb proteins and cleave them into peptides. Mass spectrometric analysis provided both protein identification and determination of protein specific adsorption behavior. Results: In general, the adsorption increased with incubation time but also protein-specific time-resolved adsorption patterns from the complex protein solution were discovered. Conclusion: The method developed is a promising tool for the characterization of biofouling, which sometimes causes rejection and encapsulation of implants and can be used as complement to other surface analytical techniques.


Analyst | 2005

Capillary electrophoresis coupled to mass spectrometry from a polymer modified poly(dimethylsiloxane) microchip with an integrated graphite electrospray tip.

Andreas P. Dahlin; Magnus Wetterhall; Gustav Liljegren; Sara K. Bergström; Per E. Andrén; Leif Nyholm; Karin E. Markides; Jonas Bergquist


Analytical Chemistry | 2005

Poly(dimethylsiloxane)-Based Microchip for Two-Dimensional Solid-Phase Extraction-Capillary Electrophoresis with an Integrated Electrospray Emitter Tip

Andreas P. Dahlin; Sara K. Bergström; Per E. Andrén; Karin E. Markides; Jonas Bergquist


Analytical and Bioanalytical Chemistry | 2012

Multiplexed quantification of proteins adsorbed to surface-modified and non-modified microdialysis membranes

Andreas P. Dahlin; Klas Hjort; Marcus O.D. Sjödin; Jonas Bergquist; Magnus Wetterhall


Lab on a Chip | 2005

On-line coupling of a microelectrode array equipped poly(dimethylsiloxane) microchip with an integrated graphite electrospray emitter for electrospray ionisation mass spectrometry

Gustav Liljegren; Andreas P. Dahlin; Camilla Zettersten; Jonas Bergquist; Leif Nyholm

Collaboration


Dive into the Andreas P. Dahlin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge