Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andreas Pikis is active.

Publication


Featured researches published by Andreas Pikis.


The Journal of Infectious Diseases | 2001

Optochin Resistance in Streptococcus pneumoniae: Mechanism, Significance, and Clinical Implications

Andreas Pikis; Joseph M. Campos; William J. Rodriguez; Jerry M. Keith

Traditionally, Streptococcus pneumoniae is identified in the laboratory by demonstrating susceptibility to optochin. Between 1992 and 1998, 4 pneumococcal isolates exhibiting optochin resistance were recovered from patients at Childrens National Medical Center. Three of the 4 isolates consisted of mixed populations of optochin-resistant and -susceptible organisms. Both subpopulations had identical antibiograms, serotypes, and restriction fragment profiles. The other isolate was uniformly resistant to optochin. Resistant strains had MICs of optochin 4-30-fold higher than susceptible strains, belonged to different serotypes, and had dissimilar restriction fragment profiles, indicating clonal unrelatedness. Resistance arose from single point mutations in either the a-subunit (W206S) or the c-subunit (G20S, M23I, and A49T) of H(+)-ATPase. There is speculation of a possible association between exposure to antimalarial drugs and evolution of optochin resistance. alpha-Hemolytic streptococci resistant to optochin, particularly invasive isolates, should be tested for bile solubility or with an S. pneumoniae DNA probe before identification as viridans streptococci.


The Journal of Infectious Diseases | 1998

A Conservative Amino Acid Mutation in the Chromosome-Encoded Dihydrofolate Reductase Confers Trimethoprim Resistance in Streptococcus pneumoniae

Andreas Pikis; Jacob A. Donkersloot; William J. Rodriguez; Jerry M. Keith

Multidrug-resistant Streptococcus pneumoniae strains have emerged over the past decade at an alarming rate. The molecular mechanism of trimethoprim resistance was investigated in 5 pneumococcal strains isolated in the Washington, DC, area from patients with invasive infections. Cloning and sequencing of the trimethoprim resistance determinant from these pneumococci indicated that an altered chromosome-encoded dihydrofolate reductase (DHFR) was responsible for the observed resistance. Comparison of DHFR sequences from pneumococcal strains with various susceptibilities to trimethoprim, together with site-directed mutagenesis, revealed that substitution of isoleucine-100 with a leucine residue resulted in trimethoprim resistance. Hydrogen bonding between the carbonyl oxygen of isoleucine-100 and the 4-amino group of trimethoprim is proposed to play a critical role in the inhibition of DHFR by trimethoprim. This enzyme-substrate model should facilitate the design of new antibacterial agents with improved activity against S. pneumoniae.


Antiviral Research | 2014

Resistance of human cytomegalovirus to ganciclovir/valganciclovir: a comprehensive review of putative resistance pathways.

Takashi E. Komatsu; Andreas Pikis; Lisa K. Naeger; Patrick R. Harrington

Human cytomegalovirus (HCMV) is a pathogen that can be life-threatening in immunocompromised individuals. Valganciclovir and its parent drug ganciclovir are currently the principle drugs used for the treatment or prevention of HCMV disease. The development of HCMV resistance to ganciclovir/valganciclovir has been documented in treated patients and is associated with the emergence of amino acid substitutions in the viral proteins pUL97, pUL54 or both. Generally, single amino acid substitutions associated with clinical resistance that alone do not confer decreased ganciclovir susceptibility in cell culture have been disregarded as causative or clinically significant. This review focuses on the analysis and mechanisms of antiviral drug resistance to HCMV. We also conducted a review of publicly available clinical and nonclinical data to construct a comprehensive list of pUL97 and pUL54 amino acid substitutions that are associated with a poor clinical response to the first line therapies ganciclovir and valganciclovir, or associated with reduced HCMV ganciclovir susceptibility in cell culture. Over 40 putative ganciclovir/valganciclovir resistance-associated substitutions were identified in this analysis. These include the commonly reported substitutions M460I/V and C592G in pUL97. There were additional substitutions that are not widely considered as ganciclovir/valganciclovir resistance-associated substitutions, including V466M in pUL97 and E315D in pUL54. Some of these ganciclovir/valganciclovir resistance-associated substitutions may confer cross-resistance to other HCMV therapies, such as cidofovir and foscarnet. Based on this review, we propose that there are more potential HCMV ganciclovir/valganciclovir resistance pathways than generally appreciated. The resulting comprehensive list of putative ganciclovir/valganciclovir resistance-associated substitutions provides a foundation for future investigations to characterize the role of specific substitutions or combinations of substitutions, which will enhance our understanding of HCMV mechanisms of ganciclovir/valganciclovir resistance and also provide insight regarding the potential for cross-resistance to other HCMV therapies.


Journal of Biological Chemistry | 2006

Genetic Requirements for Growth of Escherichia coli K12 on Methyl-α-D-glucopyranoside and the Five α-D-Glucosyl-D-fructose Isomers of Sucrose

Andreas Pikis; Sonja Hess; Ingrid Arnold; Bernhard Erni; John F. Thompson

Strains of Escherichia coli K12, including MG-1655, accumulate methyl-α-d-glucopyranoside via the phosphoenolpyruvate-dependent glucose:phosphotransferase system (IICBGlc/IIAGlc). High concentrations of intracellular methyl-α-d-glucopyranoside 6-phosphate are toxic, and cell growth is prevented. However, transformation of E. coli MG-1655 with a plasmid (pAP1) encoding the gene aglB from Klebsiella pneumoniae resulted in excellent growth of the transformant MG-1655 (pAP1) on the glucose analog. AglB is an unusual NAD+/Mn2+-dependent phospho-α-glucosidase that promotes growth of MG-1655 (pAP1) by catalyzing the in vivo hydrolysis of methyl-α-d-glucopyranoside 6-phosphate to yield glucose 6-phosphate and methanol. When transformed with plasmid pAP2 encoding the K. pneumoniae genes aglB and aglA (an α-glucoside-specific transporter AglA (IICBAgl)), strain MG-1655 (pAP2) metabolized a variety of other α-linked glucosides, including maltitol, isomaltose, and the following five isomers of sucrose: trehalulose α(1→1), turanose α(1→3), maltulose α(1→4), leucrose α(1→5), and palatinose α(1→6). Remarkably, MG-1655 (pAP2) failed to metabolize sucrose α(1→2). The E. coli K12 strain ZSC112L (ptsG::cat manXYZ nagE glk lac) can neither grow on glucose nor transport methyl-α-d-glucopyranoside. However, when transformed with pTSGH11 (encoding ptsG) or pAP2, this organism provided membranes that contained either the PtsG or AglA transporters, respectively. In vitro complementation of transporter-specific membranes with purified general phosphotransferase components showed that although PtsG and AglA recognized glucose and methyl-α-d-glucopyranoside, only AglA accepted other α-d-glucosides as substrates. Complementation experiments also revealed that IIAGlc was required for functional activity of both PtsG and AglA transporters. We conclude that AglA, AglB, and IIAGlc are necessary and sufficient for growth of E. coli K12 on methyl-α-d-glucoside and related α-d-glucopyranosides.


Molecular Biology and Evolution | 2009

Evolution and Biochemistry of Family 4 Glycosidases: Implications for Assigning Enzyme Function in Sequence Annotations

Barry G. Hall; Andreas Pikis; John Thompson

Glycosyl hydrolase Family 4 (GH4) is exceptional among the 114 families in this enzyme superfamily. Members of GH4 exhibit unusual cofactor requirements for activity, and an essential cysteine residue is present at the active site. Of greatest significance is the fact that members of GH4 employ a unique catalytic mechanism for cleavage of the glycosidic bond. By phylogenetic analysis, and from available substrate specificities, we have assigned a majority of the enzymes of GH4 to five subgroups. Our classification revealed an unexpected relationship between substrate specificity and the presence, in each subgroup, of a motif of four amino acids that includes the active-site Cys residue: alpha-glucosidase, CHE(I/V); alpha-galactosidase, CHSV; alpha-glucuronidase, CHGx; 6-phospho-alpha-glucosidase, CDMP; and 6-phospho-beta-glucosidase, CN(V/I)P. The question arises: Does the presence of a particular motif sufficiently predict the catalytic function of an unassigned GH4 protein? To test this hypothesis, we have purified and characterized the alpha-glucoside-specific GH4 enzyme (PalH) from the phytopathogen, Erwinia rhapontici. The CHEI motif in this protein has been changed by site-directed mutagenesis, and the effects upon substrate specificity have been determined. The change to CHSV caused the loss of all alpha-glucosidase activity, but the mutant protein exhibited none of the anticipated alpha-galactosidase activity. The Cys-containing motif may be suggestive of enzyme specificity, but phylogenetic placement is required for confidence in that specificity. The Acholeplasma laidlawii GH4 protein is phylogenetically a phospho-beta-glucosidase but has a unique SSSP motif. Lacking the initial Cys in that motif it cannot hydrolyze glycosides by the normal GH4 mechanism because the Cys is required to position the metal ion for hydrolysis, nor can it use the more common single or double-displacement mechanism of Koshland. Several considerations suggest that the protein has acquired a new function as the consequence of positive selection. This study emphasizes the importance of automatic annotation systems that by integrating phylogenetic analysis, functional motifs, and bioinformatics data, may lead to innovative experiments that further our understanding of biological systems.


Journal of Bacteriology | 2008

The sim Operon Facilitates the Transport and Metabolism of Sucrose Isomers in Lactobacillus casei ATCC 334

John F. Thompson; Nicholas S. Jakubovics; Bindu Abraham; Sonja Hess; Andreas Pikis

Inspection of the genome sequence of Lactobacillus casei ATCC 334 revealed two operons that might dissimilate the five isomers of sucrose. To test this hypothesis, cells of L. casei ATCC 334 were grown in a defined medium supplemented with various sugars, including each of the five isomeric disaccharides. Extracts prepared from cells grown on the sucrose isomers contained high levels of two polypeptides with M(r)s of approximately 50,000 and approximately 17,500. Neither protein was present in cells grown on glucose, maltose or sucrose. Proteomic, enzymatic, and Western blot analyses identified the approximately 50-kDa protein as an NAD(+)- and metal ion-dependent phospho-alpha-glucosidase. The oligomeric enzyme was purified, and a catalytic mechanism is proposed. The smaller polypeptide represented an EIIA component of the phosphoenolpyruvate-dependent sugar phosphotransferase system. Phospho-alpha-glucosidase and EIIA are encoded by genes at the LSEI_0369 (simA) and LSEI_0374 (simF) loci, respectively, in a block of seven genes comprising the sucrose isomer metabolism (sim) operon. Northern blot analyses provided evidence that three mRNA transcripts were up-regulated during logarithmic growth of L. casei ATCC 334 on sucrose isomers. Internal simA and simF gene probes hybridized to approximately 1.5- and approximately 1.3-kb transcripts, respectively. A 6.8-kb mRNA transcript was detected by both probes, which was indicative of cotranscription of the entire sim operon.


Journal of Biological Chemistry | 2013

Structural insights into the substrate specificity of a 6-phospho-β-glucosidase BglA-2 from Streptococcus pneumoniae TIGR4

Wei-Li Yu; Yong-Liang Jiang; Andreas Pikis; Wang Cheng; Xiao-Hui Bai; Yan-Min Ren; John Thompson; Cong-Zhao Zhou; Yuxing Chen

Background: Streptococcus pneumoniae BglA-2 is a GH-1 6-phospho-β-glucosidase with specificity toward 1,4-linked 6-phospho-β-glucosides. Results: BglA-2 and other GH-1 members adopt a similar overall structure and catalytic mechanism. Conclusion: Tyr126, Tyr303, and Trp338 determine substrate specificity, and Ser424, Lys430, and Tyr432 discriminate phosphorylated from non-phosphorylated substrate. A tryptophan residue discriminates 6-phospho-β-glucosidase from 6-phospho-β-galactosidase activities. Significance: BglA-2 structures provide new insight into characteristics and substrate specificity of 6-phospho-β-glucosidase. The 6-phospho-β-glucosidase BglA-2 (EC 3.2.1.86) from glycoside hydrolase family 1 (GH-1) catalyzes the hydrolysis of β-1,4-linked cellobiose 6-phosphate (cellobiose-6′P) to yield glucose and glucose 6-phosphate. Both reaction products are further metabolized by the energy-generating glycolytic pathway. Here, we present the first crystal structures of the apo and complex forms of BglA-2 with thiocellobiose-6′P (a non-metabolizable analog of cellobiose-6′P) at 2.0 and 2.4 Å resolution, respectively. Similar to other GH-1 enzymes, the overall structure of BglA-2 from Streptococcus pneumoniae adopts a typical (β/α)8 TIM-barrel, with the active site located at the center of the convex surface of the β-barrel. Structural analyses, in combination with enzymatic data obtained from site-directed mutant proteins, suggest that three aromatic residues, Tyr126, Tyr303, and Trp338, at subsite +1 of BglA-2 determine substrate specificity with respect to 1,4-linked 6-phospho-β-glucosides. Moreover, three additional residues, Ser424, Lys430, and Tyr432 of BglA-2, were found to play important roles in the hydrolytic selectivity toward phosphorylated rather than non-phosphorylated compounds. Comparative structural analysis suggests that a tryptophan versus a methionine/alanine residue at subsite −1 may contribute to the catalytic and substrate selectivity with respect to structurally similar 6-phospho-β-galactosidases and 6-phospho-β-glucosidases assigned to the GH-1 family.


Molecular Oral Microbiology | 2012

Metabolism of sugars by genetically diverse species of oral Leptotrichia

John Thompson; Andreas Pikis

Leptotrichia buccalis ATCC 14201 is a gram-negative, anaerobic rod-shaped bacterium resident in oral biofilm at the tooth surface. The sequenced genome of this organism reveals three contiguous genes at loci: Lebu_1525, Lebu_1526 and Lebu_1527. The translation products of these genes exhibit significant homology with phospho-α-glucosidase (Pagl), a regulatory protein (GntR) and a phosphoenol pyruvate-dependent sugar transport protein (EIICB), respectively. In non-oral bacterial species, these genes comprise the sim operon that facilitates sucrose isomer metabolism. Growth studies showed that L. buccalis fermented a wide variety of carbohydrates, including four of the five isomers of sucrose. Growth on the isomeric disaccharides elicited expression of a 50-kDa polypeptide comparable in size to that encoded by Lebu_1525. The latter gene was cloned, and the expressed protein was purified to homogeneity from Escherichia coli TOP10 cells. In the presence of two cofactors, NAD(+) and Mn(2+) ions, the enzyme readily hydrolyzed p-nitrophenyl-α-glucopyranoside 6-phosphate (pNPαG6P), a chromogenic analogue of the phosphorylated isomers of sucrose. By comparative sequence alignment, immunoreactivity and signature motifs, the enzyme can be assigned to the phospho-α-glucosidase (Pagl) clade of Family 4 of the glycosyl hydrolase super family. We suggest that the products of Lebu_1527 and Lebu_1525, catalyze the phosphorylative translocation and hydrolysis of sucrose isomers in L. buccalis, respectively. Four genetically diverse, but 16S rDNA-related, species of Leptotrichia have recently been described: L. goodfellowii, L. hofstadii, L. shahii and L. wadei. The phenotypic traits of these new species, with respect to carbohydrate utilization, have also been determined.


Journal of Bacteriology | 2010

The Gene CBO0515 from Clostridium botulinum Strain Hall A Encodes the Rare Enzyme N5-(Carboxyethyl) Ornithine Synthase, EC 1.5.1.24

John F. Thompson; Karen K. Hill; Theresa J. Smith; Andreas Pikis

Sequencing of the genome of Clostridium botulinum strain Hall A revealed a gene (CBO0515), whose putative amino acid sequence was suggestive of the rare enzyme N(5)-(1-carboxyethyl) ornithine synthase. To test this hypothesis, CBO0515 has been cloned, and the encoded polypeptide was purified and characterized. This unusual gene appears to be confined to proteolytic strains assigned to group 1 of C. botulinum.


Pediatric Research | 1999

Nasopharyngeal Carriage of Streptococcus pneumoniae : Is There a Difference between HIV-Infected Patients and Non-HIV Well Children? A 3 Year Outpatient Experience

Roopa Viraraghavan; Andreas Pikis; Tamara Rakusan; Kantilal M. Patel; William J. Rodriguez

Nasopharyngeal Carriage of Streptococcus pneumoniae : Is There a Difference between HIV-Infected Patients and Non-HIV Well Children? A 3 Year Outpatient Experience

Collaboration


Dive into the Andreas Pikis's collaboration.

Top Co-Authors

Avatar

John Thompson

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jerry M. Keith

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Joseph M. Campos

Children's National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Sonja Hess

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Stanley A. Robrish

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Barry G. Hall

Children's National Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefan Immel

Technische Universität Darmstadt

View shared research outputs
Top Co-Authors

Avatar

Christian Magni

National Scientific and Technical Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge