Andreas Schlitzer
University of Bonn
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andreas Schlitzer.
Science | 2015
Marie Vétizou; Jonathan M. Pitt; Romain Daillère; Patricia Lepage; Nadine Waldschmitt; Caroline Flament; Sylvie Rusakiewicz; Bertrand Routy; María Paula Roberti; Connie P M Duong; Vichnou Poirier-Colame; Antoine Roux; Sonia Becharef; Silvia C. Formenti; Encouse B. Golden; Sascha Cording; Gérard Eberl; Andreas Schlitzer; Florent Ginhoux; Sridhar Mani; Takahiro Yamazaki; Nicolas Jacquelot; David P. Enot; Marion Bérard; Jérôme Nigou; Paule Opolon; Alexander Eggermont; Paul Louis Woerther; Elisabeth Chachaty; Nathalie Chaput
Gut microbes affect immunotherapy The unleashing of antitumor T cell responses has ushered in a new era of cancer treatment. Although these therapies can cause dramatic tumor regressions in some patients, many patients inexplicably see no benefit. Mice have been used in two studies to investigate what might be happening. Specific members of the gut microbiota influence the efficacy of this type of immunotherapy (see the Perspective by Snyder et al.). Vétizou et al. found that optimal responses to anticytotoxic T lymphocyte antigen blockade required specific Bacteroides spp. Similarly, Sivan et al. discovered that Bifidobacterium spp. enhanced the efficacy of antiprogrammed cell death ligand 1 therapy. Science, this issue, p. 1079 and p. 1084; see also p. 1031 Gut microbes modulate the effectiveness of cancer immunotherapies in mice. Antibodies targeting CTLA-4 have been successfully used as cancer immunotherapy. We find that the antitumor effects of CTLA-4 blockade depend on distinct Bacteroides species. In mice and patients, T cell responses specific for B. thetaiotaomicron or B. fragilis were associated with the efficacy of CTLA-4 blockade. Tumors in antibiotic-treated or germ-free mice did not respond to CTLA blockade. This defect was overcome by gavage with B. fragilis, by immunization with B. fragilis polysaccharides, or by adoptive transfer of B. fragilis–specific T cells. Fecal microbial transplantation from humans to mice confirmed that treatment of melanoma patients with antibodies against CTLA-4 favored the outgrowth of B. fragilis with anticancer properties. This study reveals a key role for Bacteroidales in the immunostimulatory effects of CTLA-4 blockade.
Science | 2013
Sophie Viaud; Fabiana Saccheri; Grégoire Mignot; Takahiro Yamazaki; Romain Daillère; Dalil Hannani; David P. Enot; Christina Pfirschke; Camilla Engblom; Mikael J. Pittet; Andreas Schlitzer; Florent Ginhoux; Lionel Apetoh; Elisabeth Chachaty; Paul Louis Woerther; Gérard Eberl; Marion Bérard; Chantal Ecobichon; Dominique Clermont; Chantal Bizet; Valérie Gaboriau-Routhiau; Nadine Cerf-Bensussan; Paule Opolon; Nadia Yessaad; Eric Vivier; Bernhard Ryffel; Charles O. Elson; Joël Doré; Guido Kroemer; Patricia Lepage
The Microbiota Makes for Good Therapy The gut microbiota has been implicated in the development of some cancers, such as colorectal cancer, but—given the important role our intestinal habitants play in metabolism—they may also modulate the efficacy of certain cancer therapeutics. Iida et al. (p. 967) evaluated the impact of the microbiota on the efficacy of an immunotherapy [CpG (the cytosine, guanosine, phosphodiester link) oligonucleotides] and oxaliplatin, a platinum compound used as a chemotherapeutic. Both therapies were reduced in efficacy in tumor-bearing mice that lacked microbiota, with the microbiota important for activating the innate immune response against the tumors. Viaud et al. (p. 971) found a similar effect of the microbiota on tumor-bearing mice treated with cyclophosphamide, but in this case it appeared that the microbiota promoted an adaptive immune response against the tumors. The gut microbiota promote the efficacy of several antineoplastic agents in mice. Cyclophosphamide is one of several clinically important cancer drugs whose therapeutic efficacy is due in part to their ability to stimulate antitumor immune responses. Studying mouse models, we demonstrate that cyclophosphamide alters the composition of microbiota in the small intestine and induces the translocation of selected species of Gram-positive bacteria into secondary lymphoid organs. There, these bacteria stimulate the generation of a specific subset of “pathogenic” T helper 17 (pTH17) cells and memory TH1 immune responses. Tumor-bearing mice that were germ-free or that had been treated with antibiotics to kill Gram-positive bacteria showed a reduction in pTH17 responses, and their tumors were resistant to cyclophosphamide. Adoptive transfer of pTH17 cells partially restored the antitumor efficacy of cyclophosphamide. These results suggest that the gut microbiota help shape the anticancer immune response.
Immunity | 2013
Andreas Schlitzer; Naomi McGovern; Pearline Teo; Teresa Zelante; Koji Atarashi; Donovan Low; Adrian W. S. Ho; Peter See; Amanda Shin; Pavandip Singh Wasan; Guillaume Hoeffel; Benoit Malleret; Alexander F. Heiseke; Samantha Chew; Laura Jardine; Harriet A. Purvis; Catharien M. U. Hilkens; John Tam; Michael Poidinger; E. Richard Stanley; Anne Krug; Laurent Rénia; Baalasubramanian Sivasankar; Lai Guan Ng; Matthew Collin; Paola Ricciardi-Castagnoli; Kenya Honda; Muzlifah Haniffa; Florent Ginhoux
Summary Mouse and human dendritic cells (DCs) are composed of functionally specialized subsets, but precise interspecies correlation is currently incomplete. Here, we showed that murine lung and gut lamina propria CD11b+ DC populations were comprised of two subsets: FLT3- and IRF4-dependent CD24+CD64− DCs and contaminating CSF-1R-dependent CD24−CD64+ macrophages. Functionally, loss of CD24+CD11b+ DCs abrogated CD4+ T cell-mediated interleukin-17 (IL-17) production in steady state and after Aspergillus fumigatus challenge. Human CD1c+ DCs, the equivalent of murine CD24+CD11b+ DCs, also expressed IRF4, secreted IL-23, and promoted T helper 17 cell responses. Our data revealed heterogeneity in the mouse CD11b+ DC compartment and identifed mucosal tissues IRF4-expressing DCs specialized in instructing IL-17 responses in both mouse and human. The demonstration of mouse and human DC subsets specialized in driving IL-17 responses highlights the conservation of key immune functions across species and will facilitate the translation of mouse in vivo findings to advance DC-based clinical therapies.
Immunity | 2013
Claudia V. Jakubzick; Emmanuel L. Gautier; Sophie L. Gibbings; Dorothy K. Sojka; Andreas Schlitzer; Theodore E. Johnson; Stoyan Ivanov; Qiaonan Duan; Shashi Bala; Tracy Condon; Nico van Rooijen; John Grainger; Yasmine Belkaid; Avi Ma’ayan; David W. H. Riches; Wayne M. Yokoyama; Florent Ginhoux; Peter M. Henson; Gwendalyn J. Randolph
It is thought that monocytes rapidly differentiate to macrophages or dendritic cells (DCs) upon leaving blood. Here we have shown that Ly-6C⁺ monocytes constitutively trafficked into skin, lung, and lymph nodes (LNs). Entry was unaffected in gnotobiotic mice. Monocytes in resting lung and LN had similar gene expression profiles to blood monocytes but elevated transcripts of a limited number of genes including cyclo-oxygenase-2 (COX-2) and major histocompatibility complex class II (MHCII), induced by monocyte interaction with endothelium. Parabiosis, bromodoxyuridine (BrdU) pulse-chase analysis, and intranasal instillation of tracers indicated that instead of contributing to resident macrophages in the lung, recruited endogenous monocytes acquired antigen for carriage to draining LNs, a function redundant with DCs though differentiation to DCs did not occur. Thus, monocytes can enter steady-state nonlymphoid organs and recirculate to LNs without differentiation to macrophages or DCs, revising a long-held view that monocytes become tissue-resident macrophages by default.
Cell | 2015
Franziska Paul; Ya’ara Arkin; Amir Giladi; Diego Jaitin; Ephraim Kenigsberg; Hadas Keren-Shaul; Deborah R. Winter; David Lara-Astiaso; Meital Gury; Assaf Weiner; Eyal David; Nadav Cohen; Felicia Kathrine Bratt Lauridsen; Simon Haas; Andreas Schlitzer; Alexander Mildner; Florent Ginhoux; Steffen Jung; Andreas Trumpp; Bo T. Porse; Amos Tanay; Ido Amit
Within the bone marrow, stem cells differentiate and give rise to diverse blood cell types and functions. Currently, hematopoietic progenitors are defined using surface markers combined with functional assays that are not directly linked with in vivo differentiation potential or gene regulatory mechanisms. Here, we comprehensively map myeloid progenitor subpopulations by transcriptional sorting of single cells from the bone marrow. We describe multiple progenitor subgroups, showing unexpected transcriptional priming toward seven differentiation fates but no progenitors with a mixed state. Transcriptional differentiation is correlated with combinations of known and previously undefined transcription factors, suggesting that the process is tightly regulated. Histone maps and knockout assays are consistent with early transcriptional priming, while traditional transplantation experiments suggest that in vivo priming may still allow for plasticity given strong perturbations. These data establish a reference model and general framework for studying hematopoiesis at single-cell resolution.
Nature Immunology | 2014
Burkhard Becher; Andreas Schlitzer; Jinmiao Chen; Florian Mair; Hermi Rizal Bin Sumatoh; Karen Wei Weng Teng; Donovan Low; Christiane Ruedl; Paola Riccardi-Castagnoli; Michael Poidinger; Melanie Greter; Florent Ginhoux; Evan W. Newell
Advances in cell-fate mapping have revealed the complexity in phenotype, ontogeny and tissue distribution of the mammalian myeloid system. To capture this phenotypic diversity, we developed a 38-antibody panel for mass cytometry and used dimensionality reduction with machine learning–aided cluster analysis to build a composite of murine (mouse) myeloid cells in the steady state across lymphoid and nonlymphoid tissues. In addition to identifying all previously described myeloid populations, higher-order analysis allowed objective delineation of otherwise ambiguous subsets, including monocyte-macrophage intermediates and an array of granulocyte variants. Using mice that cannot sense granulocyte macrophage–colony stimulating factor GM-CSF (Csf2rb−/−), which have discrete alterations in myeloid development, we confirmed differences in barrier tissue dendritic cells, lung macrophages and eosinophils. The methodology further identified variations in the monocyte and innate lymphoid cell compartment that were unexpected, which confirmed that this approach is a powerful tool for unambiguous and unbiased characterization of the myeloid system.
Immunity | 2014
Naomi McGovern; Andreas Schlitzer; Merry Gunawan; Laura Jardine; Amanda Shin; Elizabeth Poyner; Kile Green; Rachel Dickinson; Xiao-Nong Wang; Donovan Low; Katie Best; Samuel Covins; Paul Milne; Sarah Pagan; Khadija Aljefri; Martin Windebank; Diego Miranda-Saavedra; Anis Larbi; Pavandip Singh Wasan; Kaibo Duan; Michael Poidinger; Venetia Bigley; Florent Ginhoux; Matthew Collin; Muzlifah Haniffa
Summary Dendritic cells (DCs), monocytes, and macrophages are leukocytes with critical roles in immunity and tolerance. The DC network is evolutionarily conserved; the homologs of human tissue CD141hiXCR1+CLEC9A+ DCs and CD1c+ DCs are murine CD103+ DCs and CD64−CD11b+ DCs. In addition, human tissues also contain CD14+ cells, currently designated as DCs, with an as-yet unknown murine counterpart. Here we have demonstrated that human dermal CD14+ cells are a tissue-resident population of monocyte-derived macrophages with a short half-life of <6 days. The decline and reconstitution kinetics of human blood CD14+ monocytes and dermal CD14+ cells in vivo supported their precursor-progeny relationship. The murine homologs of human dermal CD14+ cells are CD11b+CD64+ monocyte-derived macrophages. Human and mouse monocytes and macrophages were defined by highly conserved gene transcripts, which were distinct from DCs. The demonstration of monocyte-derived macrophages in the steady state in human tissue supports a conserved organization of human and mouse mononuclear phagocyte system.
Nature Immunology | 2015
Andreas Schlitzer; V Sivakamasundari; Jinmiao Chen; Hermi Rizal Bin Sumatoh; Jaring Schreuder; Josephine Lum; Benoit Malleret; Sanqian Zhang; Anis Larbi; Francesca Zolezzi; Laurent Rénia; Michael Poidinger; Shalin H. Naik; Evan W. Newell; Paul Robson; Florent Ginhoux
Mouse conventional dendritic cells (cDCs) can be classified into two functionally distinct lineages: the CD8α+ (CD103+) cDC1 lineage, and the CD11b+ cDC2 lineage. cDCs arise from a cascade of bone marrow (BM) DC-committed progenitor cells that include the common DC progenitors (CDPs) and pre-DCs, which exit the BM and seed peripheral tissues before differentiating locally into mature cDCs. Where and when commitment to the cDC1 or cDC2 lineage occurs remains poorly understood. Here we found that transcriptional signatures of the cDC1 and cDC2 lineages became evident at the single-cell level from the CDP stage. We also identified Siglec-H and Ly6C as lineage markers that distinguished pre-DC subpopulations committed to the cDC1 lineage (Siglec-H−Ly6C− pre-DCs) or cDC2 lineage (Siglec-H−Ly6C+ pre-DCs). Our results indicate that commitment to the cDC1 or cDC2 lineage occurs in the BM and not in the periphery.
Current Opinion in Immunology | 2014
Andreas Schlitzer; Florent Ginhoux
Dendritic cells (DCs) are the most potent antigen sensing and presenting cells in the body and are able to both initiate and fine-tune complex immune responses on a multitude of levels. In this review, we outline recent advances in our understanding of the organization of the DC network in mice and humans, the functional specialization of the DC subsets that compose these networks, and how this has enabled us to begin to elucidate cross-species parallels. Understanding the inter-relationships between DC populations in both man and mouse will ultimately allow us to exploit our knowledge of DC biology for effective therapeutic strategies.
Journal of Experimental Medicine | 2013
Sapna Devi; Yilin Wang; Weng Keong Chew; Ronald Lima; Noelia A-González; Citra Nurfarah Zaini Mattar; Shu Zhen Chong; Andreas Schlitzer; Nadja Bakocevic; Samantha Chew; Jo Keeble; Chi Ching Goh; Jackson LiangYao Li; Maximilien Evrard; Benoit Malleret; Anis Larbi; Laurent Rénia; Muzlifah Haniffa; Suet-Mien Tan; Jerry Kok Yen Chan; Karl Balabanian; Takashi Nagasawa; Françoise Bachelerie; Andrés Hidalgo; Florent Ginhoux; Paul Kubes; Lai Guan Ng
The CXCR4 antagonist plerixafor augments frequency of circulating neutrophils via release from the lung and prevents neutrophil homing to the bone marrow.