Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andreas Steege is active.

Publication


Featured researches published by Andreas Steege.


Circulation Research | 2006

Adenosine Restores Angiotensin II–Induced Contractions by Receptor-Independent Enhancement of Calcium Sensitivity in Renal Arterioles

En Yin Lai; Peter Martinka; Michael Fähling; Ralf Mrowka; Andreas Steege; Adrian Gericke; Mauricio Sendeski; Pontus B. Persson; A. Erik G. Persson; Andreas Patzak

Adenosine is coupled to energy metabolism and regulates tissue blood flow by modulating vascular resistance. In this study, we investigated isolated, perfused afferent arterioles of mice, which were subjected to desensitization during repeated applications of angiotensin II. Exogenously applied adenosine restores angiotensin II–induced contractions by increasing calcium sensitivity of the arterioles, along with augmented phosphorylation of the regulatory unit of the myosin light chain. Adenosine restores angiotensin II–induced contractions via intracellular action, because inhibition of adenosine receptors do not prevent restoration, but inhibition of NBTI sensitive adenosine transporters does. Restoration was prevented by inhibition of Rho-kinase, protein kinase C, and the p38 mitogen-activated protein kinase, which modulate myosin light chain phosphorylation and thus calcium sensitivity in the smooth muscle. Furthermore, adenosine application increased the intracellular ATP concentration in LuciHEK cells. The results of the study suggest that restoration of the angiotensin II–induced contraction by adenosine is attributable to the increase of the calcium sensitivity by phosphorylation of the myosin light chain. This can be an important component of vascular control during ischemic and hypoxic conditions. Additionally, this mechanism may contribute to the mediation of the tubuloglomerular feedback by adenosine in the juxtaglomerular apparatus of the kidney.


Hypertension | 2010

Superoxide Dismutase 1 Limits Renal Microvascular Remodeling and Attenuates Arteriole and Blood Pressure Responses to Angiotensin II via Modulation of Nitric Oxide Bioavailability

Mattias Carlström; En Yin Lai; Zufu Ma; Andreas Steege; Andreas Patzak; Ulf J. Eriksson; Jon O. Lundberg; Christopher S. Wilcox; A. Erik G. Persson

Oxidative stress is associated with vascular remodeling and increased preglomerular resistance that are both implicated in the pathogenesis of renal and cardiovascular disease. Angiotensin II induces superoxide production, which is metabolized by superoxide dismutase (SOD) or scavenged by NO. We investigated the hypothesis that SOD1 regulates renal microvascular remodeling, blood pressure, and arteriolar responsiveness and sensitivity to angiotensin II using SOD1-transgenic (SOD1-tg) and SOD1-knockout (SOD1-ko) mice. Blood pressure, measured telemetrically, rose more abruptly during prolonged angiotensin II infusion in SOD1-ko mice. The afferent arteriole media:lumen ratios were reduced in SOD1-tg and increased in SOD1-ko mice. Afferent arterioles from nontreated wild types had graded contraction to angiotensin II (sensitivity: 10−9 mol/L; responsiveness: 40%). Angiotensin II contractions were less sensitive (10−8 mol/L) and responsive (14%) in SOD1-tg but more sensitive (10−13 mol/L) and responsive (89%) in SOD1-ko mice. Arterioles from SOD1-ko had 4-fold increased superoxide formation with angiotensin II at 10−9 mol/L. NG-nitro-l-arginine methyl ester reduced arteriole diameter of SOD1-tg and enhanced angiotensin II sensitivity and responsiveness of wild-type and SOD1-tg mice to the level of SOD1-ko mice. SOD mimetic treatment with Tempol increased arteriole diameter and normalized the enhanced sensitivity and responsiveness to angiotensin II of SOD1-ko mice but did not affect wild-type or SOD1-tg mice. Neither SOD1 deficiency nor overexpression was associated with changes in nitrate/nitrite excretion or renal mRNA expression of NO synthase, NADPH oxidase, or SOD2/SOD3 isoforms and angiotensin II receptors. In conclusion, SOD1 limits afferent arteriole remodeling and reduces sensitivity and responsiveness to angiotensin II by reducing superoxide and maintaining NO bioavailability. This may prevent an early and exaggerated blood pressure response to angiotensin II.


Journal of Biological Chemistry | 2006

Translational Control of Collagen Prolyl 4-Hydroxylase-α(I) Gene Expression under Hypoxia

Michael Fähling; Ralf Mrowka; Andreas Steege; Grit Nebrich; Andrea Perlewitz; Pontus B. Persson; Bernd J. Thiele

Hypoxia is a pro-fibrotic stimulus, which is associated with enhanced collagen synthesis, as well as with augmented collagen prolyl 4-hydroxylase (C-P4H) activity. C-P4H activity is controlled mainly by regulated expression of the α C-P4H subunit. In this study we demonstrate that the increased synthesis of C-P4H-α(I) protein in human HT1080 fibroblasts under long term hypoxia (36 h, 1% oxygen) is controlled at the translational level. This is mediated by an interaction of RNA-binding protein nucleolin (∼64 kDa form) at the 5′- and 3′-untranslated regions (UTR) of the mRNA. The 5′/3′-UTR-dependent mechanism elevates the C-P4H-α(I) expression rate 2.3-fold, and participates in a 5.3-fold increased protein level under long term hypoxia. The interaction of nucleolin at the 5′-UTR occurs directly and depends on the existence of an AU-rich element. Statistical evaluation of the ∼64-kDa nucleolin/RNA interaction studies revealed a core binding sequence, corresponding to UAAAUC or AAAUCU. At the 3′-UTR, nucleolin assembles indirectly via protein/protein interaction, with the help of another 3′-UTR-binding protein, presumably annexin A2. The increased protein level of the ∼64-kDa nucleolin under hypoxia can be attributed to an autocatalytic cleavage of a high molecular weight nucleolin form, without alterations in nucleolin mRNA concentration. Thus, the alteration of translational efficiency by nucleolin, which occurs through a hypoxia inducible factor independent pathway, is an important step in C-P4H-α(I) regulation under hypoxia.


Journal of Biological Chemistry | 2009

Translational Regulation of the Human Achaete-scute Homologue-1 by Fragile X Mental Retardation Protein

Michael Fähling; Ralf Mrowka; Andreas Steege; Karin M. Kirschner; Edgar Benko; Benjamin Förstera; Pontus B. Persson; Bernd J. Thiele; Jochen C. Meier; Holger Scholz

Fragile X syndrome is a common inherited cause of mental retardation that results from loss or mutation of the fragile X mental retardation protein (FMRP). In this study, we identified the mRNA of the basic helix-loop-helix transcription factor human achaete-scute homologue-1 (hASH1 or ASCL1), which is required for normal development of the nervous system and has been implicated in the formation of neuroendocrine tumors, as a new FMRP target. Using a double-immunofluorescent staining technique we detected an overlapping pattern of both proteins in the hippocampus, temporal cortex, subventricular zone, and cerebellum of newborn rats. Forced expression of FMRP and gene silencing by small interference RNA transfection revealed a positive correlation between the cellular protein levels of FMRP and hASH1. A luciferase reporter construct containing the 5′-untranslated region of hASH1 mRNA was activated by the full-length FMRP, but not by naturally occurring truncated FMR proteins, in transient co-transfections. The responsible cis-element was mapped by UV-cross-linking experiments and reporter mutagenesis assays to a (U)10 sequence located in the 5′-untranslated region of the hASH1 mRNA. Sucrose density gradient centrifugation revealed that hASH1 transcripts were translocated into a translationally active polysomal fraction upon transient transfection of HEK293 cells with FMRP, thus indicating translational activation of hASH1 mRNA. In conclusion, we identified hASH1 as a novel downstream target of FMRP. Improved translation efficiency of hASH1 mRNA by FMRP may represent an important regulatory switch in neuronal differentiation.


Journal of Biological Chemistry | 2006

Heterogeneous Nuclear Ribonucleoprotein-A2/B1 Modulate Collagen Prolyl 4-Hydroxylase, α (I) mRNA Stability

Michael Fähling; Ralf Mrowka; Andreas Steege; Peter Martinka; Pontus B. Persson; Bernd J. Thiele

Collagen prolyl 4-hydroxylase (C-P4H) α-subunit is of regulatory importance in the assembling of C-P4H tetramers, which are necessary for the hydroxylation of procollagen chains. Change in collagen expression by hypoxia or iron diminishment is a significant issue in extracellular matrix remodeling. It was proposed that C-P4H-α (I) is regulated at the posttrancriptional level under these conditions. Here we report that the induction of C-P4H-α (I) in human fibrosarcoma cells HT1080 by the iron chelator 2,2-dipyridyl is predominantly caused by an enhancement of mRNA stability. This effect is mediated by an increased synthesis and binding of heterogeneous nuclear ribonucleoprotein (hnRNP)-A2/B1, which interacts with a (U)16 element located in the 3′-untranslated region of C-P4H-α (I) mRNA. Luciferase reporter gene assays depending on C-P4H-α (I) 3′-untranslated region and co-transfection with hnRNP-A2/B1 provide evidence that the (U)16 element is necessary and sufficient for posttranscriptional control of C-P4H-α (I) synthesis under the analyzed conditions. Further indication for the significance of hnRNP-A2/B1 in C-P4H-α (I) induction was obtained by micro array experiments. In a data set representing 686 independent physiological conditions, we found a significant positive correlation between hnRNP-A2/B1 and C-P4H-α (I) mRNAs.


Nephrology Dialysis Transplantation | 2011

Endothelin type A and B receptors in the control of afferent and efferent arterioles in mice

Janice Schildroth; Juliane Rettig-Zimmermann; Philipp Kalk; Andreas Steege; Michael Fähling; Mauricio Sendeski; Alexander Paliege; En Yin Lai; S. Bachmann; Pontus B. Persson; Berthold Hocher; Andreas Patzak

BACKGROUND Endothelin 1 contributes to renal blood flow control and pathogenesis of kidney diseases. The differential effects, however, of endothelin 1 (ET-1) on afferent (AA) and efferent arterioles (EA) remain to be established. METHODS We investigated endothelin type A and B receptor (ETA-R, ETB-R) functions in the control of AA and EA. Arterioles of ETB-R deficient, rescued mice [ETB(-/-)] and wild types [ETB(+/+)] were microperfused. RESULTS ET-1 constricted AA stronger than EA in ETB(-/-) and ETB(+/+) mice. Results in AA: ET-1 induced similar constrictions in ETB(-/-) and ETB(+/+) mice. BQ-123 (ETA-R antagonist) inhibited this response in both groups. ALA-ET-1 and IRL1620 (ETB-R agonists) had no effect on arteriolar diameter. L-NAME did neither affect basal diameters nor ET-1 responses. Results in EA: ET-1 constricted EA stronger in ETB(+/+) compared to ETB(-/-). BQ-123 inhibited the constriction completely only in ETB(-/-). ALA-ET-1 and IRL1620 constricted only arterioles of ETB(+/+) mice. L-NAME decreased basal diameter in ETB(+/+), but not in ETB(-/-) mice and increased the ET-1 response similarly in both groups. The L-NAME actions indicate a contribution of ETB-R in basal nitric oxide (NO) release in EA and suggest dilatory action of ETA-R in EA. CONCLUSIONS ETA-R mediates vasoconstriction in AA and contributes to vasoconstriction in EA in this mouse model. ETB-R has no effect in AA but mediates basal NO release and constriction in EA. The stronger effect of ET-1 on AA supports observations of decreased glomerular filtration rate to ET-1 and indicates a potential contribution of ET-1 to the pathogenesis of kidney diseases.


Investigative Ophthalmology & Visual Science | 2011

Identification of the Muscarinic Acetylcholine Receptor Subtype Mediating Cholinergic Vasodilation in Murine Retinal Arterioles

Adrian Gericke; Jan J. Sniatecki; Evgeny Goloborodko; Andreas Steege; Olga Zavaritskaya; Jan M. Vetter; Franz H. Grus; Andreas Patzak; Jürgen Wess; Norbert Pfeiffer

PURPOSE To identify the muscarinic acetylcholine receptor subtype that mediates cholinergic vasodilation in murine retinal arterioles. METHODS Muscarinic receptor gene expression was determined in murine retinal arterioles using real-time PCR. To assess the functional relevance of muscarinic receptors for mediating vascular responses, retinal vascular preparations from muscarinic receptor-deficient mice were studied in vitro. Changes in luminal arteriole diameter in response to muscarinic and nonmuscarinic vasoactive substances were measured by video microscopy. RESULTS Only mRNA for the M(3) receptor was detected in retinal arterioles. Thus, M(3) receptor-deficient mice (M3R(-/-)) and respective wild-type controls were used for functional studies. Acetylcholine concentration-dependently dilated retinal arterioles from wild-type mice. In contrast, vasodilation to acetylcholine was almost completely abolished in retinal arterioles from M3R(-/-) mice, whereas responses to the nitric oxide (NO) donor nitroprusside were retained. Carbachol, an acetylcholinesterase-resistant analog of acetylcholine, also evoked dilation in retinal arterioles from wild-type, but not from M3R(-/-), mice. Vasodilation responses from wild-type mice to acetylcholine were negligible after incubation with the non-subtype-selective muscarinic receptor blocker atropine or the NO synthase inhibitor N(ω)-nitro-L-arginine methyl ester, and were even reversed to contraction after endothelial damage with 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate. CONCLUSIONS These findings provide evidence that endothelial M(3) receptors mediate cholinergic vasodilation in murine retinal arterioles via activation of NO synthase.


Acta Physiologica | 2015

Noradrenaline enhances angiotensin II responses via p38 MAPK activation after hypoxia/re-oxygenation in renal interlobar arteries

J. Kaufmann; P. Martinka; O. Moede; Mauricio Sendeski; Andreas Steege; Michael Fähling; Michael Hultström; M. Gaestel; I. C. Moraes-Silva; Tatiana Nikitina; Zhi Zhao Liu; Olga Zavaritskaya; Andreas Patzak

Hypoxia and sympathetic activation are main factors in the pathogenesis of acute kidney injury (AKI). We tested the hypothesis that noradrenaline (NE) in combination with hypoxia aggravates the vasoreactivity of renal arteries after hypoxia/re‐oxygenation (H/R). We tested the role of adrenergic receptors and p38 MAPK using an in vitro H/R protocol.


Investigative Ophthalmology & Visual Science | 2014

Role of the M3 muscarinic acetylcholine receptor subtype in murine ophthalmic arteries after endothelial removal.

Adrian Gericke; Andreas Steege; Caroline Manicam; Tobias Böhmer; Jürgen Wess; Norbert Pfeiffer

PURPOSE We tested the hypothesis that the M3 muscarinic acetylcholine receptor subtype mediates cholinergic responses in murine ophthalmic arteries after endothelial removal. METHODS Muscarinic receptor gene expression was determined in ophthalmic arteries with intact and with removed endothelium using real-time PCR. To examine the role of the M3 receptor in mediating vascular responses, ophthalmic arteries from M3 receptor-deficient mice (M3R(-/-)) and respective wild-type controls were studied in vitro. Functional studies were performed in nonpreconstricted arteries with either intact or removed endothelium using video microscopy. RESULTS In endothelium-intact ophthalmic arteries, mRNA for all five muscarinic receptor subtypes was detected, but M3 receptor mRNA was most abundant. In endothelium-removed ophthalmic arteries, M1, M2, and M3 receptors displayed similar mRNA expression levels, which were higher than those for M4 and M5 receptors. In functional studies, acetylcholine evoked vasoconstriction in endothelium-removed arteries from wild-type mice that was virtually abolished after incubation with the muscarinic receptor blocker atropine, indicative of the involvement of muscarinic receptors. In concentration-response experiments, acetylcholine and carbachol concentration-dependently constricted endothelium-removed ophthalmic arteries from wild-type mice, but produced only negligible responses in arteries from M3R(-/-) mice. In contrast, acetylcholine concentration-dependently dilated ophthalmic arteries with intact endothelium from wild-type mice, but not from M3R(-/-) mice. Responses to the nitric oxide donor nitroprusside and to KCl did not differ between ophthalmic arteries from wild-type and M3R(-/-) mice, neither in endothelium-intact nor in endothelium-removed arteries. CONCLUSIONS These findings provide evidence that in murine ophthalmic arteries the muscarinic M3 receptor subtype mediates cholinergic endothelium-dependent vasodilation and endothelium-independent vasoconstriction.


Hypertension | 2008

Nitric Oxide Deficiency and Increased Adenosine Response of Afferent Arterioles in Hydronephrotic Mice With Hypertension

Mattias Carlström; En Yin Lai; Andreas Steege; Mauricio Sendeski; Zufu Ma; Sheller Zabihi; Ulf J. Eriksson; Andreas Patzak; A. Erik G. Persson

Afferent arterioles were used to investigate the role of adenosine, angiotensin II, NO, and reactive oxygen species in the pathogenesis of increased tubuloglomerular feedback response in hydronephrosis. Hydronephrosis was induced in wild-type mice, superoxide dismutase-1 overexpressed mice (superoxide-dismutase-1 transgenic), and deficient mice (superoxide dismutase-1 knockout). Isotonic contractions in isolated perfused arterioles and mRNA expression of NO synthase isoforms, adenosine, and angiotensin II receptors were measured. In wild-type mice, NG-nitro-l-arginine methyl ester (l-NAME) did not change the basal arteriolar diameter of hydronephrotic kidneys (−6%) but reduced it in control (−12%) and contralateral arterioles (−43%). Angiotensin II mediated a weaker maximum contraction of hydronephrotic arterioles (−18%) than in control (−42%) and contralateral arterioles (−49%). The maximum adenosine-induced constriction was stronger in hydronephrotic (−19%) compared with control (−8%) and contralateral kidneys (±0%). The response to angiotensin II became stronger in the presence of adenosine in hydronephrotic kidneys and attenuated in contralateral arterioles. l-NAME increased angiotensin II responses of all of the groups but less in hydronephrotic kidneys. The mRNA expression of endothelial NO synthase and inducible NO synthase was upregulated in the hydronephrotic arterioles. No differences were found for adenosine or angiotensin II receptors. In superoxide dismutase-1 transgenic mice, strong but similar l-NAME response (−40%) was observed for all of the groups. This response was totally abolished in arterioles of hydronephrotic superoxide dismutase-1 knockout mice. In conclusion, hydronephrosis is associated with changes in the arteriolar reactivity of both hydronephrotic and contralateral kidneys. Increased oxidative stress, reduced NO availability, and stronger reactivity to adenosine of the hydronephrotic kidney may contribute to the enhanced tubuloglomerular feedback responsiveness in hydronephrosis and be involved in the development of hypertension.

Collaboration


Dive into the Andreas Steege's collaboration.

Top Co-Authors

Avatar

Pontus B. Persson

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Ralf Mrowka

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bernd J. Thiele

Humboldt State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge