Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andreas Taubert is active.

Publication


Featured researches published by Andreas Taubert.


Dalton Transactions | 2007

Inorganic materials from ionic liquids

Andreas Taubert; Zhonghao Li

Ionic liquids (ILs) can add value to many chemical processes. The electrochemistry and the (physical) organic chemistry communities in particular have extensively studied the structure, properties, and reactivities of various ILs and reactions therein. Inorganic and materials chemists are the newest addition to the IL community: over a number of years, various approaches to the fabrication of inorganic solids with unprecedented and sometimes unique structures and properties have been reported. This article summarizes the state of this particular sub-field of IL research and highlights a few promising approaches that not only reproduce conventional synthesis in ILs, but that provide pathways towards new, possibly unknown, inorganics with advantageous properties that cannot (or only with great difficulty) be made via conventional processes.


Toxicological Sciences | 2012

Effects of Silver Nanoparticles on Primary Mixed Neural Cell Cultures: Uptake, Oxidative Stress and Acute Calcium Responses

Andrea Haase; Stephanie Rott; Alexandre Mantion; Philipp Graf; Johanna Plendl; Andreas F. Thünemann; Wolfgang Meier; Andreas Taubert; Andreas Luch; Georg Reiser

In the body, nanoparticles can be systemically distributed and then may affect secondary target organs, such as the central nervous system (CNS). Putative adverse effects on the CNS are rarely investigated to date. Here, we used a mixed primary cell model consisting mainly of neurons and astrocytes and a minor proportion of oligodendrocytes to analyze the effects of well-characterized 20 and 40 nm silver nanoparticles (SNP). Similar gold nanoparticles served as control and proved inert for all endpoints tested. SNP induced a strong size-dependent cytotoxicity. Additionally, in the low concentration range (up to 10 μg/ml of SNP), the further differentiated cultures were more sensitive to SNP treatment. For detailed studies, we used low/medium dose concentrations (up to 20 μg/ml) and found strong oxidative stress responses. Reactive oxygen species (ROS) were detected along with the formation of protein carbonyls and the induction of heme oxygenase-1. We observed an acute calcium response, which clearly preceded oxidative stress responses. ROS formation was reduced by antioxidants, whereas the calcium response could not be alleviated by antioxidants. Finally, we looked into the responses of neurons and astrocytes separately. Astrocytes were much more vulnerable to SNP treatment compared with neurons. Consistently, SNP were mainly taken up by astrocytes and not by neurons. Immunofluorescence studies of mixed cell cultures indicated stronger effects on astrocyte morphology. Altogether, we can demonstrate strong effects of SNP associated with calcium dysregulation and ROS formation in primary neural cells, which were detectable already at moderate dosages.


Journal of the American Chemical Society | 2008

Metal-Peptide Frameworks (MPFs) : Bioinspired Metal Organic Frameworks

Alexandre Mantion; Lars Massüger; Pierre Rabu; Cornelia G. Palivan; Lynne B. McCusker; Andreas Taubert

Chiral metal-organic frameworks (MOFs) have attracted a growing interest for their potential use in energy technologies, asymmetric catalysis, chiral separation, and on a more basic level, the creation of new topologies in inorganic materials. The current paper is the first report on a peptide-based MOF, a metal peptide framework (MPF), constructed from an oligovaline peptide family developed earlier by our group (Mantion, A.; et al. Macromol. Biosci. 2007, 7, 208). We have used a simple oligopeptide, Z-(L-Val)2-L-Glu(OH)-OH, to grow porous copper and calcium MPFs. The MPFs form thanks to the self-assembling properties of the peptide and specific metal-peptide and metal-ammonia interactions. They are stable up to ca. 250 degrees C and have some internal porosity, which makes them a promising prototype for the further development of MPFs.


Acta Biomaterialia | 2013

New developments in polymer-controlled, bioinspired calcium phosphate mineralization from aqueous solution

Katrin Bleek; Andreas Taubert

The polymer-controlled and bioinspired precipitation of inorganic minerals from aqueous solution at near-ambient or physiological conditions avoiding high temperatures or organic solvents is a key research area in materials science. Polymer-controlled mineralization has been studied as a model for biomineralization and for the synthesis of (bioinspired and biocompatible) hybrid materials for a virtually unlimited number of applications. Calcium phosphate mineralization is of particular interest for bone and dental repair. Numerous studies have therefore addressed the mineralization of calcium phosphate using a wide variety of low- and high-molecular-weight additives. In spite of the growing interest and increasing number of experimental and theoretical data, the mechanisms of polymer-controlled calcium phosphate mineralization are not entirely clear to date, although the field has made significant progress in the last years. A set of elegant experiments and calculations has shed light on some details of mineral formation, but it is currently not possible to preprogram a mineralization reaction to yield a desired product for a specific application. The current article therefore summarizes and discusses the influence of (macro)molecular entities such as polymers, peptides, proteins and gels on biomimetic calcium phosphate mineralization from aqueous solution. It focuses on strategies to tune the kinetics, morphologies, final dimensions and crystal phases of calcium phosphate, as well as on mechanistic considerations.


Physical Chemistry Chemical Physics | 2009

Surprisingly high, bulk liquid-like mobility of silica-confined ionic liquids.

Ronald Göbel; Peter Hesemann; Jens Weber; Eléonore Möller; Alwin Friedrich; Sabine Beuermann; Andreas Taubert

Mesoporous silica monoliths were prepared by the sol-gel technique and filled with 1-ethyl-3-methyl imidazolium [Emim]-X (X=dicyanamide [N(CN)2], ethyl sulfate [EtSO4], thiocyanate [SCN], and triflate [TfO]) ionic liquids (ILs) using a methanol-IL exchange technique. The structure and behavior of the ILs inside the silica monoliths were studied using X-ray scattering, nitrogen sorption, IR spectroscopy, solid-state NMR, and thermal analysis. DSC finds shifts in both the glass transition temperature and melting points (where applicable) of the ILs. Glass transition and melting occur well below room temperature. There is thus no conflict with the NMR and IR data, which show that the ILs are as mobile at room temperature as the bulk (not confined) ILs. The very narrow line widths of the NMR spectra suggest that the ILs in our materials have the highest mobility reported for confined ILs so far. As a result, our data suggest that it is possible to generate IL/silica hybrid materials (ionogels) with bulk-like properties of the IL. This could be interesting for applications in, e.g., the solar cell or membrane fields.


Chemistry: A European Journal | 2009

Peptide-Coated Silver Nanoparticles: Synthesis, Surface Chemistry, and pH-Triggered, Reversible Assembly into Particle Assemblies

Philipp Graf; Alexandre Mantion; Annette Foelske; Andriy Shkilnyy; Admir Masic; Andreas F. Thünemann; Andreas Taubert

Simple tripeptides are scaffolds for the synthesis and further assembly of peptide/silver nanoparticle composites. Herein, we further explore peptide-controlled silver nanoparticle assembly processes. Silver nanoparticles with a pH-responsive peptide coating have been synthesized by using a one-step precipitation/coating route. The nature of the peptide/silver interaction and the effect of the peptide on the formation of the silver particles have been studied via UV/Vis, X-ray photoelectron, and surface-enhanced Raman spectroscopies as well as through electron microscopy, small angle X-ray scattering and powder X-ray diffraction with Rietveld refinement. The particles reversibly form aggregates of different sizes in aqueous solution. The state of aggregation can be controlled by the solution pH value. At low pH values, individual particles are present. At neutral pH values, small clusters form and at high pH values, large precipitates are observed.


Journal of Materials Chemistry | 2002

Formation of uniform and monodisperse zincite crystals in the presence of soluble starch

Andreas Taubert; Gerhard Wegner

A novel procedure for the formation of uniform, monodisperse, and single-phase zincite particles using soluble starch as crystallization additive is reported. At low starch concentrations, roughly spherical particles with a bimodal size distribution form. At high starch concentrations, the precipitate only contains large, approximately spherical particles with a monomodal and narrow size distribution. A simple precipitation–aggregation mechanism is postulated for particle formation.


ACS Nano | 2011

Application of Laser Postionization Secondary Neutral Mass Spectrometry/Time-of-Flight Secondary Ion Mass Spectrometry in Nanotoxicology: Visualization of Nanosilver in Human Macrophages and Cellular Responses

Andrea Haase; Heinrich F. Arlinghaus; Jutta Tentschert; Harald Jungnickel; Philipp Graf; Alexandre Mantion; Felix Draude; S. Galla; Johanna Plendl; Mario E. Goetz; Admir Masic; Wolfgang Meier; Andreas F. Thünemann; Andreas Taubert; Andreas Luch

Silver nanoparticles (SNP) are the subject of worldwide commercialization because of their antimicrobial effects. Yet only little data on their mode of action exist. Further, only few techniques allow for visualization and quantification of unlabeled nanoparticles inside cells. To study SNP of different sizes and coatings within human macrophages, we introduce a novel laser postionization secondary neutral mass spectrometry (Laser-SNMS) approach and prove this method superior to the widely applied confocal Raman and transmission electron microscopy. With time-of-flight secondary ion mass spectrometry (TOF-SIMS) we further demonstrate characteristic fingerprints in the lipid pattern of the cellular membrane indicative of oxidative stress and membrane fluidity changes. Increases of protein carbonyl and heme oxygenase-1 levels in treated cells confirm the presence of oxidative stress biochemically. Intriguingly, affected phagocytosis reveals as highly sensitive end point of SNP-mediated adversity in macrophages. The cellular responses monitored are hierarchically linked, but follow individual kinetics and are partially reversible.


Langmuir | 2008

Poly(ethylene imine)-controlled calcium phosphate mineralization

Andriy Shkilnyy; Alwin Friedrich; Brigitte Tiersch; Stefanie Schöne; Mabya Fechner; Joachim Koetz; Carl-Wilhelm Schläpfer; Andreas Taubert

The current paper shows that poly(ethylene imine) (PEI) is an efficient template for the fabrication of spherical calcium phosphate (CaP)/polymer hybrid particles at pH values above 8. The polymer forms spherical entities, which contain one or a few CaP particles with diameters of ca. 6 nm. The samples contain up to 20 wt % polymer, which appears to be wrapped around the small CaP particles. The particles form via a mineralization-trapping pathway, where at the beginning of the precipitation small CaP particles form. Further particle growth is then prevented by precipitation of the PEI onto these particles at pH values of ca. 8. Stabilization of the particles is provided by the re-protonation of the PEI, which is adsorbed on the CaP particles, during the remainder of the mineralization process. At low pH, much larger particles form. They most likely grow via heterogeneous nucleation and growth on existing, polymer-modified CaP surfaces.


Journal of Physics: Conference Series | 2011

Toxicity of silver nanoparticles in human macrophages: uptake, intracellular distribution and cellular responses

Andrea Haase; Jutta Tentschert; Harald Jungnickel; Philipp Graf; Alexandre Mantion; Felix Draude; Johanna Plendl; Mario E. Goetz; S. Galla; Admir Masic; A F Thuenemann; Andreas Taubert; Heinrich F. Arlinghaus; Andreas Luch

Silver nanoparticles (SNP) are among the most commercialized nanoparticles worldwide. They can be found in many diverse products, mostly because of their antibacterial properties. Despite its widespread use only little data on possible adverse health effects exist. It is difficult to compare biological data from different studies due to the great variety in sizes, coatings or shapes of the particles. Here, we applied a novel synthesis approach to obtain SNP, which are covalently stabilized by a small peptide. This enables a tight control of both size and shape. We applied these SNP in two different sizes of 20 or 40 nm (Ag20Pep and Ag40Pep) and analyzed responses of THP-1-derived human macrophages. Similar gold nanoparticles with the same coating (Au20Pep) were used for comparison and found to be non-toxic. We assessed the cytotoxicity of particles and confirmed their cellular uptake via transmission electron microscopy and confocal Raman microscopy. Importantly a majority of the SNP could be detected as individual particles spread throughout the cells. Furthermore we studied several types of oxidative stress related responses such as induction of heme oxygenase I or formation of protein carbonyls. In summary, our data demonstrate that even low doses of SNP exerted adverse effects in human macrophages.

Collaboration


Dive into the Andreas Taubert's collaboration.

Top Co-Authors

Avatar

Alexandre Mantion

Bundesanstalt für Materialforschung und -prüfung

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andreas F. Thünemann

Bundesanstalt für Materialforschung und -prüfung

View shared research outputs
Top Co-Authors

Avatar

Andreas Luch

Federal Institute for Risk Assessment

View shared research outputs
Top Co-Authors

Avatar

Andrea Haase

Federal Institute for Risk Assessment

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pierre Rabu

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge