Andreas Timmann
University of Hamburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andreas Timmann.
ChemPhysChem | 2009
Jan Perlich; Mine Memesa; Alexander Diethert; Ezzeldin Metwalli; Weinan Wang; Stephan V. Roth; Andreas Timmann; Jochen S. Gutmann; Peter Müller-Buschbaum
Tailoring of the titania morphology is achieved by the combination of a triblock copolymer, acting as structure-directing agent, and a sol-gel chemistry enabling the incorporation of the provided inorganic material (titania) into the selected phase of the triblock copolymer. Spin-coating of the solution on FTO-coated glass, followed by plasma etching and calcination of the thin film results in the formation of self-encapsulated crystalline titania nanostructures. The fabricated nanostructures are coated stepwise with dye, conductive polymers and gold forming a functional multilayer stack. An advanced small-angle scattering technique probing the sample with X-ray synchrotron radiation under grazing incidence (GISAXS) is employed for the characterization of the preparation route, as scattering allows accessing the structure inside the multilayers. The tailored titania morphology is preserved during the preparation route towards the functional multilayer stack of a photovoltaic demonstration cell. Two clearly distinguishable structures originate from the substrate and the titania templated by the triblock copolymer; hence the other layers induce no additional structures. Therefore, this investigation provides the evidence that the effort spent to tailor the morphology is justified by the preservation of the self-encapsulated titania morphology that is created by the structure-directing agent throughout the functional multilayer stack build-up.
Measurement Science Review | 2010
L. Chitu; Peter Siffalovic; E. Majkova; M. Jergel; Karol Vegso; S. Luby; Ignác Capek; Alexander Satka; Jan Perlich; Andreas Timmann; Stephan V. Roth; Jozef Keckes; Guenther A. Maier
Modified Langmuir-Blodgett deposition of nanoparticles - measurement of 2D to 3D ordered arrays The ordered nanoparticle monolayers and multilayers over macroscopic areas were prepared by the modified Langmuir-Blodgett method. Using this approach, the nanoparticle monolayer is formed on the water surface by compression and subsequently it is transferred onto the substrate by a controlled removal of the water subphase. The ordering and homogeneity of the prepared mono- and multilayers was studied by scanning electron microscope (SEM), grazing-incidence small-angle X-ray scattering (GISAXS) and X-ray reflectivity (XRR) techniques. From the results it follows that an ordered nanoparticle monolayer was formed over a large area. For the multilayer, the layering and lateral ordering of each layer was confirmed by XRR and SEM performed after the deposition of each nanoparticle layer.
Langmuir | 2010
Simone Mascotto; Dirk Wallacher; Andreas Kuschel; Sebastian Polarz; Gerald A. Zickler; Andreas Timmann; Bernd M. Smarsly
Modified periodically ordered mesoporous organosilica materials were prepared starting from a recently introduced type of sol-gel precursor, containing both organic moieties and hydrolyzable Si-OR groups. In order to thoroughly characterize the mesoporosity and its accessibility, different probe gases were used in conventional gas adsorption experiments. Furthermore, in situ small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS) were applied to study the mesoporosity and the sorption processes, taking advantage of scattering contrast matching conditions. Thereby, the materials were characterized not only by different probe molecules but also at different temperatures (nitrogen at 77 K, dibromomethane at 290 K and perfluoropentane at 276 K). The comparison between the standard and in situ SAXS/SANS adsorption experiments revealed valuable information about the porosity and microstructure of the materials. It is demonstrated that the organic moieties are homogeneously distributed; that is, they do not phase-separate from silica on the nanometer scale.
Langmuir | 2010
Peter Siffalovic; L. Chitu; E. Majkova; Karol Vegso; M. Jergel; S. Luby; Ignác Capek; Alexander Satka; Guenther A. Maier; Jozef Keckes; Andreas Timmann; Stephan V. Roth
Real-time reassembly of an ordered nanoparticle monolayer due to UV-photolysis of the surfactant shell of nanoparticles was observed. The technique of grazing-incidence small-angle X-ray scattering provided the possibility to track in situ the nanoparticle pair correlation function of the sample processed in a UV-ozone reactor. The analysis revealed a total shift of approximately 1 nm of the nanoparticle nearest-neighbor distance. The temporal evolution of the interparticle distance proved to be the first-order process governed by the UV-photolysis and described by a single-exponential decay function. The nanoparticles tend to agglomerate into a labyrinth-like structure with a typical length scale of some 30 nm.
Langmuir | 2009
Marion Kuhlmann; J. M. Feldkamp; Jens Patommel; Stephan V. Roth; Andreas Timmann; Rainer Gehrke; Peter Müller-Buschbaum; Christian G. Schroer
We combine grazing-incidence small-angle X-ray scattering (GISAXS) with scanning X-ray microtomography to investigate the nanostructure in a dried gold/polystyrene nanocomposite drop. Local GISAXS structure factors are reconstructed at each position on the surface of this two-dimensionally heterogeneous sample with 30 microm pixel size. Evidence for four types of self-assembled colloidal crystalline structures is provided by the reconstructed data of the drop demonstrating the feasibility of the method.
Small | 2008
Peter Siffalovic; E. Majkova; L. Chitu; M. Jergel; S. Luby; Ignác Capek; Alexander Satka; Andreas Timmann; Stephan V. Roth
The spontaneous self-assembly process of superparamagnetic nanoparticles in a fast-drying colloidal drop is observed in real time. The grazing-incidence small-angle X-ray scattering (GISAXS) technique is employed for an in situ tracking of the reciprocal space, with a 3 ms delay time between subsequent frames delivered by a new generation of X-ray cameras. A focused synchrotron beam and sophisticated sample oscillations make it possible to relate the dynamic reciprocal to direct space features and to localize the self-assembly. In particular, no nanoparticle ordering is found inside the evaporating drop and near-surface region down to a drop thickness of 90 microm. Scanning through the shrinking drop-contact line indicates the start of self-assembly near the drop three-phase interface, in accord with theoretical predictions. The results obtained have direct implications for establishing the self-assembly process as a routine technological step in the preparation of new nanostructures.
Review of Scientific Instruments | 2009
Andreas Timmann; Ralph Döhrmann; Tom Schubert; Horst Schulte-Schrepping; Ulrich Hahn; Marion Kuhlmann; Rainer Gehrke; Stephan V. Roth; Andreas Schropp; Christian G. Schroer; B. Lengeler
At BW4 at HASYLAB a beryllium compound refractive lens (Be-CRL) is used for the focusing in small-angle x-ray scattering experiments. Using it provides the advantages of higher long-term stability and a much easier alignment compared to a setup with focusing mirrors. In our investigations presented here, we show the advantages of using a Be-CRL in small-angle and also ultra small-angle x-ray scattering. We investigated the beam characteristics at the sample position with respect to spot size and photon flux. The spot size is comparable to that of a setup with focusing mirrors but with a gain in flux and better long-term stability. It is also shown that plane mirrors are still necessary to suppress higher order energies passing the monochromator.
Journal of Applied Crystallography | 2010
Peter Siffalovic; M. Jergel; L. Chitu; E. Majkova; Igor Matko; S. Luby; Andreas Timmann; Stephan Volker Roth; Jozef Keckes; Guenter Alois Maier; Alexandra Hembd; Frank Hertlein; Joerg Wiesmann
A high-performance W/B4C multilayer mirror with 80 periods of nominally 1.37 nm was measured by grazing-incidence small-angle X ray scattering (GISAXS) in order to analyse the lateral and vertical correlations of the interface roughness within the framework of a scaling concept of multilayer growth. A dynamic growth exponent z = 2.19 (7) was derived, which is close to the value predicted by the Edwards–Wilkinson growth model. The effective number of correlated periods indicates a partial replication of the low interface roughness frequencies. A simulation of the GISAXS pattern based on the Born approximation suggests a zero Hurst fractal parameter H and a logarithmic type of autocorrelation function. The as-deposited mirror layers are amorphous and exhibit excellent thermal stability up to 1248 K in a 120 s rapid thermal vacuum annealing process. At higher temperatures, the B4C layers decompose and poorly developed crystallites of a boron-rich W–B hexagonal phase are formed, and yet multilayer collapse is not complete even at 1273 K. Ozone treatment for 3000 s in a reactor with an ozone concentration of 150 mg m−3 results in the formation of an oxidized near-surface region of a thickness approaching ∼10% of the total multilayer thickness, with a tendency to saturation.
Biointerphases | 2008
Fernanda F. Rossetti; Panteleimon Panagiotou; Florian Rehfeldt; Emanuel Schneck; Martin Dommach; Sérgio S. Funari; Andreas Timmann; Peter Müller-Buschbaum; Motomu Tanaka
The characteristic in-plane length scales of ultrathin films of regenerated cellulose are measured using noncontact atomic force microscopy (NC-AFM) and grazing incidence small-angle x-ray scattering (GISAXS) in ambient atmosphere and under various humidity conditions. The aim is to elucidate the structural basis for the excellent compatibility of cellulose supports to planar lipid membranes. Films are deposited on silicon wafers by Langmuir-Blodgett (LB) transfer and spin coating. NC-AFM height profiles and the resulting calculated power spectral density functions indicate that both kinds of cellulose films have almost identical root-mean-square roughness values (0.7–0.8 nm) and very similar characteristic length scales (32 nm), respectively. GISAXS measurements, both above and below the critical angle of total external reflection, show that the dominant length scales in the bulk and near the surface of the films are comparable (∼50 nm). The origin of these length scales can be attributed to the bundle of rodlike molecules of cellulose that result during the regeneration process (i.e., as a consequence of the cleavage of the silyl side chains of trimethylsilylcellulose). Exposure of the cellulose samples to various humidities shows that above a relative humidity of 97% a significant swelling of the films occurs, which is consistent with our previous findings. The swelling of films with more than 30 LB monolayers of cellulose induces a remarkable out-of-plane rearrangement of the cellulose bundles, due to a reduced influence of the solid substrate compared to thinner films with only eight to ten LB monolayers.
Journal of Applied Crystallography | 2007
Stephan V. Roth; Peter Müller-Buschbaum; Andreas Timmann; Jan Perlich; Rainer Gehrke
Pattern formation is investigated in a one-dimensional gradient prepared from an aqueous colloidal gold nanoparticle solution. The hydrodynamic process can be reconstructed by determining the prominent length scales and surface roughness in the dried gradient. The structural information is obtained using a combination of grazing-incidence small-angle X-ray scattering, which is a method of high-statistical relevance, and a moderate microfocused beam. This allows for scanning the gradient and to locally reveal the structure of the thin film. Our results, based on a simplified hydrodynamic model, indicate a system oscillating between depleted regions, nanoparticle domains and complete nanoparticle layers.