Andreas Tschech
University of Ulm
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andreas Tschech.
Archives of Microbiology | 1991
Angelika Rudolphi; Andreas Tschech; Georg Fuchs
The initial reactions in anaerobic metablism of methylphenols (cresols) and dimethylphenols were studied with denitrifying bacteria. A newly isolated strain, possibly a Paracoccus sp., was able to grow on o-or p-cresol as sole organic substrate with a generation time of 11 h; o-or p-cresol was completely oxidized to CO2 with nitrate being reduced to N2. A denitrifying Pseudomonas-like strain oxidized m-or p-cresol as the sole organic growth substrate completely to CO2 with a generation time of 14 h. Demonstration of intermediates and/or in vitro measurement of enzyme activities suggest the following enzymatic steps:(1) p-Cresol was metabolized by both strains via benzoyl-CoA as central intermediate as follows: p-cresol → 4-OH-benzaldehyde → 4-OH-benzoate → 4-OH-benzoly-CoA → benzoyl-CoA. Oxidation of the methyl group to 4-OH-benzaldehyde was catalyzed by p-cresol methylhydroxylase. After oxidation of the aldehyde to 4-OH-benzoate, 4-OH-benzoyl-CoA is formed by 4-OH-benzoyl-CoA synthetase; subsequent reductive dehydroxylation of 4-OH-benzoyl-CoA to benzoyl-CoA is catalyzed by 4-OH-benzoyl-CoA reductase (dehydroxylating).(2) o-Cresol was metabolized in the Paracoccus-like strain via 3-CH3-benzoyl-CoA as central intermediate as follows: o-cresol → 4-OH-3-CH3-benzoate → 4-OH-3-CH3-benzoyl-CoA → 3-CH3-benzoyl-CoA. The following enzymes were demonstrated: (a) An enzyme catalyzing an isototope exchange reaction between 14CO2 and the carboxyl of 4-OH-3-CH3-benzoate; this activity is thought to be a partial reaction catalyzed by an o-cresol carboxylase. (b) 4-OH-3-CH3-benzoyl-CoA synthetase (AMP-forming) activating the carboxylation product 4-OH-3-CH3-benzoate to its coenzyme A thioester. (c) 4-OH-3-CH3-benzoyl-CoA reductase (dehydroxylating) catalyzing the reductive dehydroxylation of the 4-hydroxyl group with reduced benzyl viologen as electron donor to yield 3-CH3-benzoyl-CoA. This thioester may also be formed by action of a coenzyme A ligase when 3-CH3-benzoate is metabolized. 2,4-Dimethylphenol was metabolized via 4-OH-3-CH3-benzoate and further to 3-CH3-benzoyl-CoA.(3) The initial reactions of anaerobic metabolism of m-cresol in the Pseudomonas-like strain were not resolved. No indication for the oxidation of the methyl group nor for the carboxylation of m-cresol was found. In contrast, 2,4-and 3,4-dimethylphenol were oxidized to 4-OH-3-CH3-and 4-OH-2-CH3-benzoate, respectively, probably initiated by p-cresol methylhydroxylase; however, these compounds were not metabolized further.
Archives of Microbiology | 1989
Andreas Tschech; Georg Fuchs
Extracts of denitrifying bacteria grown anaerobically with phenol and nitrate catalyzed an isotope exchange between 14CO2 and the carboxyl group of 4-hydroxybenzoate. This exchange reaction is ascribed to a novel enzyme, phenol carboxylase, initiating the anaerobic degradation of phenol by para-carboxylation to 4-hydroxybenzoate. Some properties of this enzyme were determined by studying the isotope exchange reaction. Phenol carboxylase was rapidly inactivated by oxygen; strictly anoxic conditions were essential for preserving enzyme activity. The exchange reaction specifically was catalyzed with 4-hydroxybenzoate but not with other aromatic acids. Only the carboxyl group was exchanged; [U-14C]phenol was not exchanged with the aromatic ring of 4-hydroxybenzoate. Exchange activity depended on Mn2+ and inorganic phosphate and was not inhibited by avidin. Ortho-phosphate could not be substituted by organic phosphates nor by inorganic anions; arsenate had no effect. The pH optimum was between pH 6.5–7.0. The specific activity was 100 nmol 14CO2 exchange · min-1 · mg-1 protein. Phenol grown cells contained 4-hydroxybenzoyl CoA synthetase activity (40 nmol · min-1 · mg-1 protein). The possible role of phenol carboxylase and 4-hydroxybenzoyl CoA synthetase in anaerobic phenol metabolism is discussed.
Archives of Microbiology | 1990
Claudia Kluge; Andreas Tschech; Georg Fuchs
The anaerobic metabolism of 2,4- and 2,6-dihydroxybenzoic acid (beta- and gamma-resorcyclic acid) and 1,3-benzenediol (resorcinol) was investigated in a fermenting coculture of a Clostridium sp. with a Campylobacter sp. (Tschech A and Schink B (1985) Arch Microbiol 143: 52–59) and in a newly isolated denitrifying gram-negative bacterium. The enzymes of this pathway were searched for and partly characterized in vitro. It is shown that resorcyclic acids are decarboxylated in both organisms by specific enzymes, 2,4- or 2,6-dihydroxybenzoic acid decarboxylase. In the fermenting bacterium, the aromatic product, 1,3-benzenediol, is reduced by 1,3-benzenediol (resorcinol) reductase to the non-aromatic 1,3-cyclohexanedione; the novel enzyme which catalyzes the two-electron-reduction of the aromatic nucleus is oxygen-sensitive and uses reduced methyl viologen as artificial electron donor. The cyclic dione is then hydrolytically cleaved to 5-oxocaproic acid by 1,3-cyclohexanedione hydrolase. The denitrifying bacterium did not metabolize 1,3-cyclohexanedione, and the enzymes metabolizing 1,3-benzenediol or 1,3-cyclohexanedione were not detected. It is concluded that two different pathways of anaerobic 1,3-benzenediol metabolism exist.
Archives of Microbiology | 1991
Werner Dangel; Ruth Brackmann; Achim Lack; Magdy El-Said Mohamed; Jürgen Koch; Brigitte Oswald; Birgit Seyfried; Andreas Tschech; Georg Fuchs
The regulation of the expression of enzyme activities catalyzing initial reactions in the anoxic metabolism of various aromatic compounds was studied at the whole cell level in the denitrifying Pseudomonas strain K 172. The specific enzyme activities were determined after growth on six different aromatic substrates (phenol, 4-hydroxybenzoate, benzoate, p-cresol, phenylacetate, 4-hydroxyphenylacetate) all being proposed to be metabolized anaerobically via benzoyl-CoA. As a control cells were grown on acetate, or aerobically on benzoate. The expression of the following enzyme activities was determined.“Phenol carboxylase”, as studied by the isotope exchange between 14CO2 and the carboxyl group of 4-hydroxybenzoate; 4-hydroxybenzoyl-CoA reductase (dehydroxylating); p-cresol methylhydroxylase; 4-hydroxybenzyl alcohol dehydrogenase; 4-hydroxybenzaldehyde dehydrogenase; coenzymeA ligases for the aromatic acids benzoate, 4-hydroxybenzoate, phenylacetate, and 4-hydroxyphenylacetate; phenylglyoxylate: acceptor oxidoreductase and 4-hydroxyphenylglyoxylate: acceptor oxidoreductase; aromatic alcohol and aldehyde dehydrogenases.The formation of most active enzymes is strictly regulated; they were only induced when required, the basic activities being almost zero. The observed whole cell regulation pattern supports the postulate that the enzyme activities play a role in anoxic aromatic metabolism and that the compounds are degraded via the following intermediates: Phenol → 4-hydroxybenzoate → 4-hydroxybenzoyl-CoA → benzoyl-CoA; 4-hydroxybenzoate → 4-hydroxybenzoyl-CoA → benzoyl-CoA; benzoate → benzoyl-CoA; p-cresol → 4-hydroxybenzaldehyde → 4-hydroxybenzoate → 4-hydroxybenzoyl-CoA → benzoyl-CoA; phenylacetate → phenylacetyl-CoA → phenylglyoxylate → benzoyl-CoA plus CO2; 4-hydroxyphenylacetate → 4-hydroxyphenylacetyl-CoA → 4-hydroxyphenylglyoxylate → 4-hydroxybenzoyl-CoA plus CO2 → benzoyl-CoA.
FEBS Letters | 1989
Rainer Glöckler; Andreas Tschech; Georg Fuchs
The initial reactions in anaerobic degradation of phenol to CO2 have been studied in vitro with a denitrifying Pseudomonas strain grown with phenol and nitrate in the absence of molecular oxygen. Phenol has been proposed to be carboxylated to 4‐hydroxybenzoate [(1987) Arch. Microbiol. 148, 213–217]. 4‐Hydroxybenzoate was activated to 4‐hydroxybenzoyl‐CoA by a coenzyme A ligase. Cell extracts also catalyzed the reductive dehydroxylation of 4‐hydroxybenzoyl‐CoA to benzoyl‐CoA with reduced benzyl viologen as electron donor. This enzyme, benzoyl‐CoA:(acceptor) 4‐oxidoreductase (hydroxylating) (EC 1.3.99.‐), has not been reported before. The data suggest that phenol and 4‐hydroxybenzoate are anaerobically metabolized by this strain via benzoyl‐CoA.
Archives of Microbiology | 1988
Werner Dangel; Andreas Tschech; Georg Fuchs
Three strains of denitrifying bacteria were anaerobically enriched and isolated from oxic or anoxic habitats with cyclohexanol or cyclohexanone as sole electron donor and carbon source and with nitrate as electron acceptor. The bacteria were facultatively anaerobic, Gramnegative and metabolism was strictly oxidative with molecular oxygen, nitrate, or nitrite as terminal electron acceptor. Cyclohexanol and cyclohexanone were degraded both anaerobically and aerobically. Aromatic compounds were oxidized in the presence of molecular oxygen only. One of the bacterial strains was further characterized. During anaerobic cyclohexanol degradation approximately 40% of the substrate was oxidized to phenol, which accumulated as dead-endproduct in the growth medium; 60% of cyclohexanol was completely oxidized to CO2 and assimilated, respectively. In addition to phenol formation, transient accumulation of cyclohexanone, 2-cyclohexenone and 1,3-cyclohexanedione was observed. Based on these findings we propose a pathway for anaerobic cyclohexanol degradation involving these intermediates.
Archives of Microbiology | 1989
Werner Dangel; Andreas Tschech; Georg Fuchs
The enzymes involved in the anaerobic degration of cyclohexanol were searched for in a denitrifying Pseudomonas species which metabolizes this alicyclic compound to CO2 anaerobically. All postulated enzyme activities were demonstrated in vitro with sufficient specific activities. Cyclohexanol dehydrogenase catalyzes the oxidation of the substrate to cyclohexanone. Cyclohexanone dehydrogenase oxidizes cyclohexanone to 2-cyclohexenone. 2-Cyclohexenone hydratase and 3-hydroxycyclohexanone dehydrogenase convert 2-cyclohexenone via 3-hydroxycyclohexanone into 1,3-cyclohexanedione. Finally, the dione is cleaved by 1,3-cyclohexanedione hydrolase into 5-oxocaproic acid. Some kinetic and regulatory properties of these enzymes were studied.
Archives of Microbiology | 1991
Birgit Seyfried; Andreas Tschech; Georg Fuchs
From various oxic or anoxic habitats anaerobic enrichment cultures were set up which completely oxidized aromatic amino acids to CO2 with nitrate as electron acceptor. Tyrosine and tryptophan at first were degraded to phenol and indole, respectively, prior to utilization of the aromatic ring; with phenylalanine no intermediates were detected. Attempts to isolate denitrifying bacteria able to completely degrade aromatic amino acids were unsuccessful. Starting with these enrichments several strains of denitrifying bacteria were anaerobically enriched and isolated with known fermentation products of amino acids (phenylacetate, 4-OH-phenylacetate, 2-OH-benzoate) plus nitrate as sole sources of carbon and energy.Three strains were characterized further. They grew well in defined mineral salts medium, were gram-negative and facultatively anaerobic with strictly oxidative metabolism; molecular oxygen, nitrate or nitrite served as electron acceptors. The isolates were tentatively identified as pseudomonads, but could not be aligned to known species. They oxidized a variety of aromatic compounds completely to CO2 anaerobically and, with some exceptions, also aerobically. The substrates included among others: (4-OH)-phenylacetate, (4-OH)-phenylglyoxylate, benzoate, 2-aminobenzoate, phenol, OH-benzoates, indole and notably toluene. Reduced alicyclic compounds were not utilized. During anaerobic degradation of (4-OH)-phenylacetate transient accumulation of (4-OH)-phenylglyoxylate was observed.It is proposed that anaerobic α-oxidation of the-CH2−COOH side chain to -CO−COOH initiates anaerobic degradation of (4-OH)-phenylacetate. This implies a novel type of anaerobic α-hydroxylation with water as the oxygen donor.
Archives of Microbiology | 1997
Andreas Tinschert; Andreas Kiener; Klaus Heinzmann; Andreas Tschech
Abstract 2-Hydroxynicotinic acid is an important building block for herbicides and pharmaceuticals. Enrichment strategies to increase the chances of finding microorganisms capable of hydroxylating at the C2 position and to avoid the degradation of nicotinic acid via the usual intermediate, 6-hydroxynicotinic acid, were used. Three bacterial strains (Mena 23/3–3c, Mena 25/4–1, and Mena 25/ 4–3) were isolated from enrichment cultures with 6-methylnicotinic acid as the sole source of carbon and energy. Partial characterization of these strains indicated that they represent new bacterial species. All three strains completely degraded 6-methylnicotinic acid, and evidence is presented that the first step in the degradation pathway of strain Mena 23/3–3c is hydroxylation at the C2 position. Resting cells of this strain grown on 6-methylnicotinic acid also hydroxylated nicotinic acid at the C2 position, but did not further degrade the product. Strain Mena 23/ 3–3c showed the highest degree of 16S rRNA sequence similarity to members of the genera Ralstonia and Burkholderia.
Archives of Microbiology | 1993
Magdy El-Said Mohamed; Birgit Seyfried; Andreas Tschech; Georg Fuchs
Anaerobic degradation of (4-hydroxy)phenylacetate in denitrifying Pseudomonas sp. was investigated. Evidence is presented for α-oxidation of the coenzyme A (CoA)-activated carboxymethyl side chain, a reaction which has not been described. The C6−C2 compounds are degraded to benzoyl-CoA and furtheron to CO2 via the following intermediates: Phenylacetyl-CoA, phenylglyoxylate, benzoyl-CoA plus CO2; 4-hydroxyphenylacetyl-CoA, 4-hydroxyphenylglyoxylate, 4-hydroxybenzoyl-CoA plus CO2, benzoyl-CoA. Trace amounts of mandelate possibly derived from mandelyl-CoA were detected during phenylacetate degradation in vitro. The reactions are catalyzed by (i) phenylacetate-CoA ligase which converts phenylacetate to phenylacetyl-CoA and by a second enzyme for 4-hydroxyphenylacetate; (ii) a (4-hydroxy)-phenylacetyl-CoA dehydrogenase system which oxidizes phenylacetyl-CoA to (4-hydroxy)phenylglyoxylate plus CoA; and (iii) (4-hydroxy)phenylglyoxylate: acceptor oxidoreductase (CoA acylating) which catalyzes the oxidative decarboxylation of (4-hydroxy)phenylglyoxylate to (4-hydroxy)benzoyl-CoA and CO2. (iv) The degradation of 4-hydroxyphenylacetate in addition requires the reductive dehydroxylation of 4-hydroxybenzoyl-CoA to benzoyl-CoA, catalyzed by 4-hydroxybenzoyl-CoA reductase (dehydroxylating). The whole cell regulation of these enzyme activities supports the proposed pathway. An ionic mechanism for anaerobic α-oxidation of the CoA-activated carboxymethyl side chain is proposed. Phenylacetic acids are plant constituents and in addition are formed from a large variety of natural aromatic compounds by microorganisms; their degradation therefore plays a significant role in nature, as illustrated in the preceding paper (Mohamed and Fuchs 1993). We have investigated and purified an enzyme which catalyzes the first step in the anaerobic degradation of phenylacetate in a denitrifying Pseudomonas sp. Phenylacetate is converted to phenylacetyl-CoA by phenylacetate-CoA ligase (AMP forming). The postulated function of this enzyme is corroborated by the strict regulation of its expression. 4-Hydroxyphenylacetate appears to be similarly activated by an independent enzyme prior to further degradation.We have suggested before that phenylacetyl-CoA is anaerobically converted by α-oxidation of the side chain to phenylglyoxylate1, which is oxidatively decarboxylated to benzoyl-CoA plus CO2 (Seyfried et al. 1991; Dangel et al. 1991). 4-Hydroxyphenylacetate was proposed to be similarly oxidized to 4-hydroxybenzoyl-CoA plus CO2, followed by reductive dehydroxylation to benzoyl-CoA. The evidence was not presented in full, and the crucial α-oxidation was not demonstrated in vitro. We present here ample evidence for this pathway. A hypothetical mechanism is proposed by which the oxidation of the α-methylene group to an α-carbonyl group may occur.
Collaboration
Dive into the Andreas Tschech's collaboration.
Swiss Federal Institute of Aquatic Science and Technology
View shared research outputs