Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andreas Vogg is active.

Publication


Featured researches published by Andreas Vogg.


The Journal of Nuclear Medicine | 2007

123I-ITdU-mediated nanoirradiation of DNA efficiently induces cell kill in HL60 leukemia cells and in doxorubicin-, beta-, or gamma-radiation-resistant cell lines.

Sven N. Reske; Sandra Deisenhofer; Gerhard Glatting; Boris D. Zlatopolskiy; Agnieszka Morgenroth; Andreas Vogg; Andreas K. Buck; Claudia Friesen

Resistance to radiotherapy or chemotherapy is a common cause of treatment failure in high-risk leukemias. We evaluated whether selective nanoirradiation of DNA with Auger electrons emitted by 5-123I-iodo-4′-thio-2′-deoxyuridine (123I-ITdU) can induce cell kill and break resistance to doxorubicin, β-, and γ-irradiation in leukemia cells. Methods: 4′-thio-2′-deoxyuridine was radiolabeled with 123/131I and purified by high-performance liquid chromatography. Cellular uptake, metabolic stability, DNA incorporation of 123I-ITdU, and the effect of the thymidylate synthase (TS) inhibitor 5-fluoro-2′-deoxyuridine (FdUrd) were determined in HL60 leukemia cells. DNA damage was assessed with the comet assay and quantified by the olive tail moment. Apoptosis induction and irradiation-induced apoptosis inhibition by benzoylcarbonyl-Val-Ala-Asp-fluoromethyl ketone (z-VAD.fmk) were analyzed in leukemia cells using flow cytometry analysis. Results: The radiochemical purity of ITdU was 95%. Specific activities were 900 GBq/μmol for 123I-ITdU and 200 GBq/μmol for 131I-ITdU. An in vitro cell metabolism study of 123I-ITdU with wild-type HL60 cells demonstrated an uptake of 1.5% of the initial activity/106 cells of 123I-ITdU. Ninety percent of absorbed activity from 123I-ITdU in HL60 cells was specifically incorporated into DNA. 123I-ITdU caused extensive DNA damage (olive tail moment > 12) and induced more than 90% apoptosis in wild-type HL60 cells. The broad-spectrum inhibitor of caspases zVAD-fmk reduced 123I-ITdU–induced apoptosis from more than 90% to less than 10%, demonstrating that caspases were central for 123I-ITdU–induced cell death. Inhibition of TS with FdUrd increased DNA uptake of 123I-ITdU 18-fold and the efficiency of cell kill about 20-fold. In addition, 123I-ITdU induced comparable apoptotic cell death (>90%) in sensitive parental leukemia cells and in leukemia cells resistant to β-irradiation, γ-irradiation, or doxorubicin at activities of 1.2, 4.1, 12.4, and 41.3 MBq/mL after 72 h. This finding indicates that 123I-ITdU breaks resistance to β-irradiation, γ-irradiation, and doxorubicin in leukemia cells. Conclusion: 123I-ITdU–mediated nanoirradiation of DNA efficiently induced apoptosis in sensitive and resistant leukemia cells against doxorubicin, β-irradiation, and γ-irradiation and may provide a novel treatment strategy for overcoming resistance to conventional radiotherapy or chemotherapy in leukemia. Cellular uptake and cell kill are highly amplified by inhibiting TS with FdUrd.


Clinical Cancer Research | 2008

Preferential tumor targeting and selective tumor cell cytotoxicity of 5-[131/125I]iodo-4'-thio-2'-deoxyuridine.

Agnieszka Morgenroth; Sandra Deisenhofer; Gerhard Glatting; Falk H.-G. Kunkel; Cornelia Dinger; Boris D. Zlatopolskiy; Andreas Vogg; Thomas Kull; Sven N. Reske

Purpose: Auger electron emitting radiopharmaceuticals are attractive for targeted nanoirradiation therapy, provided that DNA of malignant cells is selectively addressed. Here, we examine 5-[123/125/131I]iodo-4′-thio-2′-deoxyuridine (ITdU) for targeting DNA in tumor cells in a HL60 xenograft severe combined immunodeficient mouse model. Experimental Design: Thymidine kinase and phosphorylase assays were done to determine phosphorylation and glycosidic bond cleavage of ITdU, respectively. The biodistribution and DNA incorporation of ITdU were determined in severe combined immunodeficient mice bearing HL60 xenografts receiving pretreatment with 5-fluoro-2′-deoxyuridine (FdUrd). Organ tissues were dissected 0.5, 4, and 24 h after radioinjection and uptake of [131I]ITdU (%ID/g tissue) was determined. Cellular distribution of [125I]ITdU was imaged by microautoradiography. Apoptosis and expression of the proliferation marker Ki-67 were determined by immunohistologic staining using corresponding paraffin tissue sections. Results: ITdU is phosphorylated by thymidine kinase 1 and stable toward thymidylate phosphatase-mediated glycosidic bond cleavage. Thymidylate synthase-mediated deiodination of [123/125/131I]ITdU was inhibited with FdUrd. Pretreatment with FdUrd increased preferentially tumor uptake of ITdU resulting in favorable tumor-to-normal tissue ratios and tumor selectivity. ITdU was exclusively localized within the nucleus and incorporated into DNA. In FdUrd-pretreated animals, we found in more than 90% of tumor cells apoptosis induction 24 h postinjection of ITdU, indicating a highly radiotoxic effect in tumor cells but not in cells of major proliferating tissues. Conclusion: ITdU preferentially targets DNA in proliferating tumor cells and leads to apoptosis provided that the thymidylate synthase is inhibited.


Cancer Biotherapy and Radiopharmaceuticals | 2003

[18F]5-fluoro-2-deoxyuridine-PET for imaging of malignant tumors and for measuring tissue proliferation.

I Buchmann; Andreas Vogg; Gerhard Glatting; Stefan Schultheiß; Peter Møller; Frank Leithäuser; Michael Schulte; Wilfried Gfrörer; Jörg Kotzerke; Sven N. Reske

The nucleoside 5-fluoro-2-deoxyuridine is a pyrimidine analogue accumulating in proliferative cells. We prospectively evaluated biodistribution of the PET tracer [(18)F]5-fluoro-2-deoxyuridine (FdUrd), its value for imaging malignant tumors, and its correlation to both [(18)F]2-fluoro-2-deoxyglucose (FDG)-PET findings and histological proliferation indices. In 11 previously untreated patients (5 lung carcinoma; 3 soft tissue sarcoma; 2 gastrointestinal carcinoma; 1 non-Hodgkin lymphoma [NHL]), mean doses of 290 MBq FdUrd and 390 MBq FDG were administered intravenously on subsequent days. Static PET scans were initiated 50-70 min after administration and the mean standardized uptake values (SUV) were calculated. Dynamic emission FdUrd scans were performed in 8/11 patients. Time-activity curves of blood and tumors as well as SUV of tumor lesions and organs were calculated. Proliferative activity was evaluated by Ki-67 immunohistostaining of biopsies. Tracer accumulated physiologically in liver, kidney, and bladder. SUVs were: kidney, 4.8 +/- 0.66; liver, 4.1 +/- 0.36; vertebrae, 0.70 +/- 0.17; spleen, 0.37 +/- 0.06; lungs, 0.19 +/- 0.05; femora/humeri, 0.14 +/- 0.03. Five patients exhibited significant intratumoral FdUrd-uptake (2 sarcomas; 1 NHL; 2 lung carcinomas) with mean SUVs ranging from 0.7 to 10.5. Metastases were not detected. Time-activity curves showed a rapid initial increase of intratumoral activity followed by activity retention. FDG-PET was positive in 10/11 patients. Correlation between the SUV of FdUrd-PET and FDG-PET or the tissue proliferation index, respectively, was not significant. FdUrd was a suitable tracer for imaging malignant tumors only in exceptional cases: Sarcoma, NHL, and some lung carcinomas were detected. FdUrd-PET was less effective than FDG-PET. In this group of patients, it was not useful in measuring tissue proliferation.


Cancer Biotherapy and Radiopharmaceuticals | 2008

Short Communication: 18F-Immuno-PET: Determination of Anti-CD66 Biodistribution in a Patient with High-Risk Leukemia

Bernd Neumaier; Felix M. Mottaghy; Andreas K. Buck; Gerhard Glatting; Norbert M. Blumstein; Bettina Mahren; Andreas Vogg; Sven N. Reske

The monoclonal antibody anti-CD66 labeled with (99m)Tc is widely used as Scintimun granulocyte for bone marrow immunoscintigraphy. Further, recently performed clinical radioimmunotherapy studies with [(90)Y]Y-anti-CD66 proved to be suitable for the treatment of hematologic malignancies. Before radioimmunotherapy with [(90)Y]Y-anti-CD66, dosimetric estimations are required to minimize radiotoxicity and determine individual applicable activities. Planar imaging, using gamma-emitting radionuclides, is conventionally carried out to estimate the absorbed organ doses. In contrast, immuno-PET (positron emission tomography) enables the quantification of anti-CD66 accumulation and provides better spatial and temporal resolution. Therefore, in this study, a semiautomated radiosynthesis of [(18)F]F-anti-CD66 was developed, using the (18)F-acylation agent, N-succinimidyl-4-[(18)F]fluorobenzoate ([(18)F]SFB). As a proof of concept, an intraindividual comparison between PET and conventional scintigraphy, using (18)F- and (99m)Tc-labeled anti-CD66 in 1 patient with high-risk leukemia, is presented. Both labeled antibodies displayed a similar distribution pattern with high preferential uptake in bone marrow. Urinary excretion of [(18)F]F-anti-CD66 was increased and bone marrow uptake reduced, in comparison to [(99m)Tc]Tc-anti-CD66. Nevertheless, PET-based dosimetry with [(18)F]F-anti-CD66 could provide additional information to support conventional scintigraphy. Moreover, [(18)F]F-anti-CD66 is ideally suited for bone marrow imaging using PET.


Methods | 2011

Targeted endoradiotherapy using nucleotides

Agnieszka Morgenroth; Andreas Vogg; Felix M. Mottaghy; Jörn Schmaljohann

Increased cellular proliferation is an integral part of the cancer phenotype. Hence, the sustained and continued demand on supply of DNA building blocks during the DNA replication presents a potential target for therapeutic intervention. For this propose, the α and Auger electron emitting nucleotides analogs are attractive for targeted endoradiotherapy, given that DNA of malignant cells is selectively addressed. This review summarizes development and preclinical and clinical studies of endoradiotherapeutic acting nucleoside analogs with a special focus on thymidine analogs.


Advanced Healthcare Materials | 2016

Assessing the Intracellular Integrity of Phosphine‐Stabilized Ultrasmall Cytotoxic Gold Nanoparticles Enabled by Fluorescence Labeling

Janine Broda; Andrea Küster; Stefan Westhues; Dirk Fahrenkamp; Andreas Vogg; Julia Steitz; Felix M. Mottaghy; Gerhard Müller-Newen; Ulrich Simon

As the size of nanoparticles (NPs) is in the range of biological molecules and subcellular structures, they provide new perspectives in biomedicine. This work presents studies concerning the cellular uptake and distribution of phosphine-stabilized cytotoxic 1.4 nm sized AuNPs and their probable degradation during this process. Therefore, ultrasmall phosphine-stabilized AuNPs are modified by linking a fluorophore covalently to the ligand shell. Monitoring the fluorescence on a cellular level by means of flow cytometry and confocal laser scanning microscopy allows determining the fate of the ligand shell during AuNP cell internalization, due to the fact that the fluorescence of a fluorophore bound near to the AuNP surface is quenched. Cell fractionation is conducted in order to quantify the AuNP content at the cell membrane, in the cytoplasm, and the cell nucleus. The incubation of cells with the fluorophore-modified AuNPs reveals a partial loss of the ligand shell upon AuNP cell interaction, evident by the emerging fluorescence signal. This loss is the precondition to unfold high AuNP cytotoxicity. Together with their significantly different biodistribution and enhanced circulation times compared to larger AuNPs, the findings demonstrate the high potential of ultrasmall AuNPs for drug development or therapy.


Molecular Cancer Therapeutics | 2014

Breaking the Invulnerability of Cancer Stem Cells: Two-Step Strategy to Kill the Stem-like Cell Subpopulation of Multiple Myeloma

Agnieszka Morgenroth; Andreas Vogg; Boris Zlatopolskiy; Monika Siluschek; Caroline Oedekoven; Felix M. Mottaghy

In multiple myeloma, the presence of highly resistant cancer stem cells (CSC) that are responsible for tumor metastasis and relapse has been proven. Evidently, for achieving complete response, new therapeutic paradigms that effectively eradicate both, CSCs and bulk cancer populations, need to be developed. For achieving that goal, an innovative two-step treatment combining targeting of thymidine de novo synthesis pathway and a nanoirradiation by the Auger electron emitting thymidine analogue 123/125I-5-iodo-4′-thio-2′-deoxyuridine (123/125I-ITdU) could be a promising approach. The pretreatment with thymidylate synthase inhibitor 5-fluoro-2′-deoxyuridine (FdUrd, 1 μmol/L for 1 hour) efficiently induced proliferation and terminal differentiation of isolated myeloma stem-like cells. Moreover, FdUrd stimulation led to a decreased activity of a functional CSC marker, aldehyde dehydrogenase (ALDH). The metabolic conditioning by FdUrd emerged to be essential for enhanced incorporation of 125I-ITdU (incubation with 50 kBq/2 × 104 cells for 4 days) and, consequently, for the induction of irreparable DNA damage. 125I-ITdU showed a pronounced antimyeloma effect on isolated tumor stem-like cells. More than 85% of the treated cells were apoptotic, despite activation of DNA repair mechanisms. Most important, exposure of metabolically conditioned cells to 125I-ITdU resulted in a complete inhibition of clonogenic recovery. This is the first report showing that pretreatment with FdUrd sensitizes the stem-like cell compartment in multiple myeloma to apoptosis induced by 125I-ITdU–mediated nanoirradiation of DNA. Mol Cancer Ther; 13(1); 144–53. ©2013 AACR.


Biomedizinische Technik | 2014

Nondestructive monitoring of tissue-engineered constructs

Julia Frese; Agnieszka Morgenroth; Marianne E. Mertens; Sabine Koch; Lisanne Rongen; Andreas Vogg; Boris D. Zlatopolskiy; Bernd Neumaier; Valentine Gesché; Twan Lammers; Thomas Schmitz-Rode; Petra Mela; Stefan Jockenhoevel; Felix M. Mottaghy; Fabian Kiessling

Abstract Tissue engineering as a multidisciplinary field enables the development of living substitutes to replace, maintain, or restore diseased tissue and organs. Since the term was introduced in medicine in 1987, tissue engineering strategies have experienced significant progress. However, up to now, only a few substitutes were able to overcome the gap from bench to bedside and have been successfully approved for clinical use. Substantial donor variability makes it difficult to predict the quality of tissue-engineered constructs. It is essential to collect sufficient data to ensure that poor or immature constructs are not implanted into patients. The fulfillment of certain quality requirements, such as mechanical and structural properties, is crucial for a successful implantation. There is a clear need for new nondestructive and real-time online monitoring and evaluation methods for tissue-engineered constructs, which are applicable on the biomaterial, tissue, cellular, and subcellular levels. This paper reviews current established nondestructive techniques for implant monitoring including biochemical methods and noninvasive imaging.


Applied Radiation and Isotopes | 2014

Simple and efficient synthesis of 2-[(18)F]fluoroethyl triflate for high yield (18)fluoroethylation.

Tanja Peters; Andreas Vogg; Iris M. Oppel; Jörn Schmaljohann

The [(18)F]fluoroethyl moiety has been widely utilized in the synthesis of (18)F-labelled compounds. The aim of this work was the reliable synthesis of [(18)F]FEtOTf with a novel strategy to increase the reactivity of the commonly used [(18)F]FEB and [(18)F]FEtOTos. [(18)F]FEtOTf and the intermediate [(18)F]FEtOH were synthesized in high RCY (78% and 85%, respectively) and purified by SPE. The high potency of [(18)F]FEtOTf was shown by the efficient alkylation of the deactivated nucleophile aniline under mild conditions, as well as by the synthesis of [(18)F]FEC.


Cancer Medicine | 2017

Dual addressing of thymidine synthesis pathways for effective targeting of proliferating melanoma

Tara Miran; Andreas Vogg; Laila El Moussaoui; Hans-Juergen Kaiser; Natascha Drude; Verena von Felbert; Felix M. Mottaghy; Agnieszka Morgenroth

Here, we examined the potential of blocking the thymidine de novo synthesis pathways for sensitizing melanoma cells to the nucleoside salvage pathway targeting endogenous DNA irradiation. Expression of key nucleotide synthesis and proliferation enzymes thymidylate synthase (TS) and thymidine kinase 1 (TK1) was evaluated in differentiated (MITFhigh [microphthalmia‐associated transcription factor] IGR1) and invasive (MITFmedium IGR37) melanoma cells. For inhibition of de novo pathways cells were incubated either with an irreversible TS inhibitor 5‐fluoro‐2′‐deoxyuridine (FdUrd) or with a competitive dihydrofolate‐reductase (DHFR) inhibitor methotrexate (MTX). Salvage pathway was addressed by irradiation‐emitting thymidine analog [123/125I]‐5‐iodo‐4′‐thio‐2′‐deoxyuridine (123/125I‐ITdU). The in vivo targeting efficiency was visualized by single‐photon emission computed tomography. Pretreatment with FdUrd strongly increased the cellular uptake and the DNA incorporation of 125I‐ITdU into the mitotically active IGR37 cells. This effect was less pronounced in the differentiated IGR1 cells. In vivo, inhibition of TS led to a high and preferential accumulation of 123I‐ITdU in tumor tissue. This preclinical study presents profound rationale for development of therapeutic approach by highly efficient and selective radioactive targeting one of the crucial salvage pathways in melanomas.

Collaboration


Dive into the Andreas Vogg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bernd Neumaier

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge