Andreas von Ameln-Mayerhofer
University of Tübingen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andreas von Ameln-Mayerhofer.
European Journal of Cell Biology | 2009
Lusine Danielyan; Richard Schäfer; Andreas von Ameln-Mayerhofer; Marine Buadze; Julia Geisler; Tim Klopfer; Ute Burkhardt; Barbara Proksch; Stephan Verleysdonk; Miriam Ayturan; Gayane H. Buniatian; Christoph H. Gleiter; William H. Frey
The safety and efficacy of cell-based therapies for neurodegenerative diseases depends on the mode of cell administration. We hypothesized that intranasally administered cells could bypass the blood-brain barrier by migrating from the nasal mucosa through the cribriform plate along the olfactory neural pathway into the brain and cerebrospinal fluid (CSF). This would minimize or eliminate the distribution of cellular grafts to peripheral organs and will help to dispense with neurosurgical cell implantation. Here we demonstrate transnasal delivery of cells to the brain following intranasal application of fluorescently labeled rat mesenchymal stem cells (MSC) or human glioma cells to naive mice and rats. After cells crossed the cribriform plate, two migration routes were identified: (1) migration into the olfactory bulb and to other parts of the brain; (2) entry into the CSF with movement along the surface of the cortex followed by entrance into the brain parenchyma. The delivery of cells was enhanced by hyaluronidase treatment applied intranasally 30 min prior to the application of cells. Intranasal delivery provides a new non-invasive method for cell delivery to the CNS.
NeuroImage | 2012
Kristina Fischer; Vesna Sossi; Andreas von Ameln-Mayerhofer; Gerald Reischl; Bernd J. Pichler
UNLABELLED Quantification of the binding of [11C]methylphenidate to the dopamine transporter (DAT) using positron emission tomography (PET) is often used to evaluate the integrity of dopaminergic neurons in the striatal regions of the brain. Over the past decade, many genetically engineered mouse models of human disease have been developed and have become particularly useful for the study of disease onset and progression over time. Quantitative imaging of small structures such as the mouse brain is especially challenging. Thus, the aims of this study were (1) to evaluate the accuracy of quantifying DAT binding using in vivo PET and (2) to examine the impact of different methodologies. METHODS Eight mice were scanned with [11C]methylphenidate under true or transient equilibrium conditions using a bolus and constant infusion protocol or a bolus injection protocol to evaluate the accuracy of the Logan graphical approach for [11C]methylphenidate imaging in mice. Displacement with unlabeled methylphenidate (0.1, 3 and 10 mg/kg) was used to verify specific binding. In a second experiment, 30 mice were lesioned by injection of 6-hydroxydopamine (6-OHDA) at doses of 0, 2 or 4 μg (n=10) into the right striatum to assess the dose-dependent correlation between the PET signal and dopaminergic degeneration. In addition, we performed test-retest experiments and used ex vivo autoradiography (AR) to validate the effect of partial volume on the accuracy of the [11C]methylphenidate PET quantification in the mouse striatum. RESULTS The binding potentials (BPND) calculated from the Logan graphical analysis under transient equilibrium conditions (1.03±0.1) were in excellent agreement with those calculated at true equilibrium (1.07±0.1). Displacement of specific binding with 0.1, 3 and 10mg/kg methylphenidate resulted in 38%, 77% and 81% transporter occupancy in the striatum. Intra-striatal injections of 6-OHDA caused a dose-dependent decrease in the specific binding of [11C]methylphenidate to the DAT in the striatum. The BPND was reduced by 49% and 61% after injection with 2 and 4 μg of 6-OHDA, respectively. The test-retest reproducibility was 6% in the healthy striatum and 27% in the lesioned striatum. In addition, only a small (15%) difference was found between the [11C]methylphenidate DVR-1 values determined by PET and AR on the healthy side, and no differences were observed on the lesioned side. CONCLUSION The present work demonstrates for the first time that [11C]methylphenidate PET is useful for the quantification of striatal dopamine transporters at the dopaminergic nerve terminals in the mouse striatum; therefore, this marker may be used as a biomarker in genetically engineered mouse models of neurodegenerative disorders. However, only changes resulting in greater than 10% differences in BPND values can reliably be detected in vivo.
Addiction Biology | 2010
Nora von Ameln; Andreas von Ameln-Mayerhofer
Despite the great popularity of 3,4‐methylenedioxymethamphetamine (MDMA, Ecstasy) as a drug of abuse, not much is known about the detailed mechanisms of the acute and subchronic effects of the drug. There is especially a lack of information about the distinct behavioural effects of its optical isomers (enantiomers) R‐ and S‐MDMA compared with the racemic RS‐MDMA. For this purpose, adolescent rats were repetitively treated during two treatment stages (stage 1: days 1–10; stage 2: days 15, 17, 19) with RS‐MDMA (5 or 10 mg/kg) or each of the respective enantiomers (5 mg/kg). The repeated treatment started on postnatal day (PND) 32 and locomotor activity was measured on each day by means of a photobeam‐equipped activity box system. RS‐MDMA or S‐MDMA administration led acutely to massive hyperlocomotion and subchronically, to the development of behavioural sensitization after a short habituation period. R‐MDMA was free of hyperactivating effects and even decreased locomotor behaviour upon repeated treatment. Nevertheless, co‐administration of R‐MDMA increased the hyperactivity of S‐MDMA and made the S‐MDMA induced behavioural sensitization state‐dependent. The animals pre‐treated with R‐MDMA showed a sensitized response in adulthood when tested with RS‐MDMA. Our results indicated that even in the absence of substantial neurotoxicity, both MDMA enantiomers can lead to long‐term changes in brain circuitry and concomitant behavioural changes when repeatedly administered in adolescence. The sensitization development was most pronounced in the animals treated with S‐ and RS‐MDMA; the animals with R‐MDMA did not develop sensitization under repeated treatment but expressed a sensitized response when challenged with RS‐MDMA.
Behavioural Brain Research | 2013
Nadine Y. Lettfuss; Sonja Seeger-Armbruster; Andreas von Ameln-Mayerhofer
Behavioral sensitization to the repeated administration of a psychostimulant presumably plays a key role in the pathogenesis of addiction and schizophrenia. Among other psychostimulants, 3,4-methylenedioxymethamphetamine (MDMA) is known to produce behavioral sensitization, too, but its mechanism of action is still not fully understood. Along with the strong release of catecholamines and serotonin, MDMA exerts actions at additional transmitter systems, including acetylcholine (ACh). To identify the cholinergic involvement in the development and expression of MDMA-induced sensitization, rats were treated daily with MDMA (5.0 mg/kg), MDMA plus the muscarinic antagonist atropine (4.28 mg/kg), or MDMA plus the nicotinic antagonist mecamylamine (1.0 mg/kg) for 13 consecutive days. The results show that atropine co-treatment was able to block the development of behavioral sensitization to MDMA, measured as horizontal activity and rearing, whereas mecamylamine did not. Pharmacological challenge with MDMA alone increased the locomotion in all substance pretreated groups with the MDMA plus atropine group showing the lowest values. The second challenge with MDMA plus atropine showed a decrease in locomotor behavior in the MDMA- and an increase in the MDMA plus atropine pretreated groups, resulting in similar levels of activity for both groups. A control experiment revealed no change in horizontal activity and rearing when only the cholinergic antagonists (atropine; mecamylamine) were administered. This is the first study that shows a substantial role of muscarinic receptors for the development of behavioral sensitization to MDMA.
NeuroImage | 2012
Nadine Y. Lettfuss; Kristina Fischer; Vesna Sossi; Bernd J. Pichler; Andreas von Ameln-Mayerhofer
In the context of Parkinsons disease, motor symptoms result from the degeneration of nigrostriatal neurons. Dopamine (DA) replacement using l-3,4-dihydroxyphenylalanine (L-DOPA) has been the treatment of choice in the early stages of the disease. However, with disease progression, patients suffer from motor complications, which have been suggested to arise from DA released from serotonergic terminals according to the false neurotransmitter hypothesis. The synthetic amphetamine derivative (±) 3,4-methylenedioxymethamphetamine (MDMA) has been shown to significantly inhibit dyskinesia in humans and in animal models of PD. In this study, we examined the effect of MDMA on L-DOPA-induced DA release by using [(11)C]raclopride kinetic modeling to assess alterations in DA neurotransmission in a rat model of L-DOPA-induced dyskinesia (LID) in a longitudinal in vivo PET study. Rats were submitted to 6-OHDA lesions, and the lesions were confirmed to be sufficiently severe based on the performance during stepping tests and [(11)C]methylphenidate PET scans. The rats underwent two [(11)C]raclopride PET sessions before (baseline) and after two weeks of chronic L-DOPA treatment (priming). L-DOPA priming led to strong abnormal involuntary movements (AIMs). In group 1, L-DOPA priming reduced L-DOPA-induced DA release in the lesioned striatum with no effect on the healthy side, while the concomitant administration of L-DOPA and MDMA (group 2) increased the DA levels in the lesioned and healthy striatum. In addition, behavioral analysis, which was performed two weeks after the second PET session, confirmed the antidyskinetic effect of MDMA. Our data show that L-DOPA-induced DA release is attenuated in the Parkinsonian striatum after chronic L-DOPA pretreatment and that the antidyskinetic mechanism of MDMA does not depend primarily on dopaminergic neurotransmission.
Behavioural Brain Research | 2012
Britta Wachter; Sonja Schürger; Andreas Schmid; Adriane Gröger; Rüdiger Sadler; Anna Speidel; Jens Rolinger; Bernd J. Pichler; Daniela Berg; Hans-Joachim Wagner; Andreas von Ameln-Mayerhofer; Eva Küppers
The neurotoxin 6-hydroxydopamine (6-OHDA) is frequently used in animal models to mimic Parkinsons disease. Imaging studies describe hyperintense signalling in regions close to the site of the 6-OHDA injection in T2-weighted (T2w) magnetic resonance imaging (MRI). The nature of this hyperintense signal remains elusive and still is matter of discussion. Here we demonstrate hyperintense signalling in T2w MRI and decreased apparent diffusion coefficient (ADC) values following intraventricular injection of 6-OHDA. Moreover, we show decreased GFAP immunoreactivity in brain regions corresponding to the region revealing the hyperintense signalling, probably indicating a loss of astrocytes due to a toxic effect of 6-OHDA. In the striatum, where no hyperintense signalling in MRI was observed following intraventricular 6-OHDA injection, immunohistochemical and molecular analyses revealed an altered expression of the water channel aquaporin 4 and the emergence of vasogenic edema, indicated by an increased perivascular space. Moreover, a significant decrease of claudin-3 immunoreactivity was observed, implying alterations in the blood brain barrier. These findings indicate that intraventricular injection of 6-OHDA results (1) in effects close to the ventricles that can be detected as hyperintense signalling in T2w MRI accompanied by reduced ADC values and (2) in effects on brain regions not adjacent to the ventricles, where a disturbance of water homeostasis occurs. We clearly demonstrate that 6-OHDA leads to brain edema that in turn may affect the overall results of experiments (e.g. behavioral alterations). Therefore, when using 6-OHDA in Parkinsons models effects that are not mediated by degeneration of catecholaminergic neurons have to be considered.
Behavioural Brain Research | 2009
Daniela Mohr; Andreas von Ameln-Mayerhofer; Markus Fendt
The prefrontal cortex and the nucleus accumbens are two brain sites which are known to be involved in the modulation of the acoustic startle response. In particular, the release of monoaminergic transmitters within these brain sites plays an important role in prepulse inhibition of the startle response which serves as an operational measure of sensorimotor gating. Like for dopamine, it is well established that serotonin transmission plays an important role in prepulse inhibition. However, there are only few studies investigating the effects of local manipulation of serotonin transmission on prepulse inhibition. The aim of the present study was to test whether prepulse inhibition or the startle response itself was affected by serotonergic depletion of either the prefrontal cortex or the nucleus accumbens. Serotonergic depletion was induced by local injections of 5,7-dihydroxytryptamine and verified by ex vivo analysis of transmitter levels by high pressure liquid chromatography. In our behavioural tests, we found that 5,7-dihydroxytryptamine into the prefrontal cortex decreased prepulse inhibition, whereas injections into the nucleus accumbens facilitated prepulse inhibition. The time course of these behavioural effects, as well as the transmitter level changes within the different brain sites was very different. Most interestingly, 5,7-dihydroxytryptamine injections into the nucleus accumbens affect serotonin and dopamine levels in both, nucleus accumbens and prefrontal cortex. Taken together, the present study supports an important role of serotonin in the modulation of prepulse inhibition and baseline startle magnitude. However, the observed changes cannot be attributed to a specific brain site since our data clearly show that local 5,7-dihydroxytryptamine injections also affect transmitter levels in brain sites away from the injection site.
Rejuvenation Research | 2011
Lusine Danielyan; Richard Schäfer; Andreas von Ameln-Mayerhofer; Felix Bernhard; Stephan Verleysdonk; Marine Buadze; Ali Lourhmati; Tim Klopfer; Felix Schaumann; Barbara Schmid; Christoph Koehle; Barbara Proksch; Robert Weissert; Holger M. Reichardt; Jens van den Brandt; Gayane H. Buniatian; Matthias Schwab; Christoph H. Gleiter; William H. Frey
Psychopharmacology | 2009
Thomas V. Wiecki; Katrin Riedinger; Andreas von Ameln-Mayerhofer; Werner J. Schmidt; Michael J. Frank
Cell and Tissue Research | 2010
Britta Wachter; Sonja Schürger; Jens Rolinger; Andreas von Ameln-Mayerhofer; Daniela Berg; Hans-Jochen Wagner; Eva Kueppers