Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andreas von Kienlin is active.

Publication


Featured researches published by Andreas von Kienlin.


The Astrophysical Journal | 2009

The Fermi gamma-ray burst monitor

Charles A. Meegan; Giselher G. Lichti; P. N. Bhat; E. Bissaldi; M. S. Briggs; V. Connaughton; R. Diehl; G. J. Fishman; J. Greiner; Andrew S. Hoover; Alexander Jonathan Van Der Horst; Andreas von Kienlin; R. Marc Kippen; C. Kouveliotou; Sheila McBreen; W. S. Paciesas; Robert B. Preece; H. Steinle; M. Wallace; Robert B. Wilson; C. Wilson-Hodge

The Gamma-Ray Burst Monitor (GBM) will significantly augment the science return from the Fermi Observatory in the study of gamma-ray bursts (GRBs). The primary objective of GBM is to extend the energy range over which bursts are observed downward from the energy range of the Large Area Telescope (LAT) on Fermi into the hard X-ray range where extensive previous data sets exist. A secondary objective is to compute burst locations onboard to allow re-orienting the spacecraft so that the LAT can observe delayed emission from bright bursts. GBM uses an array of 12 sodium iodide scintillators and two bismuth germanate scintillators to detect gamma rays from ~8 keV to ~40 MeV over the full unocculted sky. The onboard trigger threshold is ~0.7 photons cm–2 s–1 (50-300 keV, 1 s peak). GBM generates onboard triggers for ~250 GRBs per year.


Nature | 2006

Radioactive 26Al from massive stars in the Galaxy.

R. Diehl; Hubert Halloin; Karsten Kretschmer; Giselher G. Lichti; V. Schönfelder; Andrew W. Strong; Andreas von Kienlin; Wei Wang; P. Jean; Jurgen Knodlseder; Jean-Pierre Roques; Georg Weidenspointner; Stephane Schanne; Dieter H. Hartmann; Christoph Winkler; Cornelia B. Wunderer

Gamma-rays from radioactive 26Al (half-life ∼7.2 × 105 years) provide a ‘snapshot’ view of continuing nucleosynthesis in the Galaxy. The Galaxy is relatively transparent to such γ-rays, and emission has been found concentrated along its plane. This led to the conclusion that massive stars throughout the Galaxy dominate the production of 26Al. On the other hand, meteoritic data show evidence for locally produced 26Al, perhaps from spallation reactions in the protosolar disk. Furthermore, prominent γ-ray emission from the Cygnus region suggests that a substantial fraction of Galactic 26Al could originate in localized star-forming regions. Here we report high spectral resolution measurements of 26Al emission at 1808.65 keV, which demonstrate that the 26Al source regions corotate with the Galaxy, supporting its Galaxy-wide origin. We determine a present-day equilibrium mass of 2.8 (± 0.8) solar masses of 26Al. We use this to determine that the frequency of core collapse (that is, type Ib/c and type II) supernovae is 1.9 (± 1.1) events per century.


The Astrophysical Journal | 2011

DETECTION OF A THERMAL SPECTRAL COMPONENT IN THE PROMPT EMISSION OF GRB 100724B.

S. Guiriec; V. Connaughton; M. S. Briggs; Michael Burgess; F. Ryde; F. Daigne; P. Meszaros; Adam Goldstein; J. E. McEnery; N. Omodei; P. N. Bhat; E. Bissaldi; Ascension Camero-Arranz; Vandiver Chaplin; R. Diehl; G. J. Fishman; S. Foley; M. H. Gibby; J. Greiner; David Gruber; Andreas von Kienlin; Marc Kippen; C. Kouveliotou; Sheila McBreen; Charles A. Meegan; W. S. Paciesas; Robert D. Preece; Dave Tierney; Alexander Jonathan Van Der Horst; C. Wilson-Hodge

Observations of GRB 100724B with the Fermi Gamma-Ray Burst Monitor find that the spectrum is dominated by the typical Band functional form, which is usually taken to represent a non-thermal emission component, but also includes a statistically highly significant thermal spectral contribution. The simultaneous observation of the thermal and non-thermal components allows us to confidently identify the two emission components. The fact that these seem to vary independently favors the idea that the thermal component is of photospheric origin while the dominant non-thermal emission occurs at larger radii. Our results imply either a very high efficiency for the non-thermal process or a very small size of the region at the base of the flow, both quite challenging for the standard fireball model. These problems are resolved if the jet is initially highly magnetized and has a substantial Poynting flux.


Astrophysical Journal Supplement Series | 2014

The Fermi GBM Gamma-Ray Burst Spectral Catalog: Four Years of Data

David Gruber; Adam Goldstein; Victoria Weller von Ahlefeld; P. Narayana Bhat; E. Bissaldi; M. S. Briggs; Dave Byrne; W. Cleveland; V. Connaughton; R. Diehl; G. J. Fishman; G. Fitzpatrick; S. Foley; M. H. Gibby; J. Greiner; S. Guiriec; Alexander Jonathan Van Der Horst; Andreas von Kienlin; C. Kouveliotou; Emily Layden; Lin Lin; Charles A. Meegan; S. McGlynn; W. S. Paciesas; V. Pelassa; Robert D. Preece; C. Wilson-Hodge; S. Xiong; George Younes; Hoi-Fung Yu

In this catalog we present the updated set of spectral analyses of gamma-ray bursts (GRBs) detected by the Fermi Gamma-Ray Burst Monitor during its first four years of operation. It contains two types of spectra, time-integrated spectral fits and spectral fits at the brightest time bin, from 943 triggered GRBs. Four different spectral models were fitted to the data, resulting in a compendium of more than 7500 spectra. The analysis was performed similarly but not identically to Goldstein et al. All 487 GRBs from the first two years have been re-fitted using the same methodology as that of the 456 GRBs in years three and four. We describe, in detail, our procedure and criteria for the analysis and present the results in the form of parameter distributions both for the observer-frame and rest-frame quantities. The data files containing the complete results are available from the High-Energy Astrophysics Science Archive Research Center.


Astrophysical Journal Supplement Series | 2012

The Fermi GBM Gamma-Ray Burst Spectral Catalog: The First Two Years

Adam Goldstein; J. Michael Burgess; Robert D. Preece; M. S. Briggs; S. Guiriec; Alexander Jonathan Van Der Horst; V. Connaughton; C. Wilson-Hodge; W. S. Paciesas; Charles A. Meegan; Andreas von Kienlin; P. N. Bhat; E. Bissaldi; Vandiver Chaplin; R. Diehl; G. J. Fishman; G. Fitzpatrick; S. Foley; M. H. Gibby; J. Greiner; David Gruber; R. Marc Kippen; C. Kouveliotou; Sheila McBreen; S. McGlynn; Dave Tierney

We present systematic spectral analyses of gamma-ray bursts (GRBs) detected by the Fermi Gamma-Ray Burst Monitor (GBM) during its first two years of operation. This catalog contains two types of spectra extracted from 487 GRBs, and by fitting four different spectral models, this results in a compendium of over 3800 spectra. The models were selected based on their empirical importance to the spectral shape of many GRBs, and the analysis performed was devised to be as thorough and objective as possible. We describe in detail our procedure and criteria for the analyses, and present the bulk results in the form of parameter distributions. This catalog should be considered an official product from the Fermi GBM Science Team, and the data files containing the complete results are available from the High-Energy Astrophysics Science Archive Research Center.


The Astrophysical Journal | 2011

When A Standard Candle Flickers

C. Wilson-Hodge; Michael L. Cherry; Gary Lee Case; Wayne H. Baumgartner; E. Beklen; P. Narayana Bhat; M. S. Briggs; Ascension Camero-Arranz; Vandiver Chaplin; V. Connaughton; Mark H. Finger; Neil Gehrels; J. Greiner; Keith Jahoda; P. Jenke; R. Marc Kippen; C. Kouveliotou; Hans A. Krimm; Erik Kuulkers; Niels Lund; Charles A. Meegan; L. Natalucci; W. S. Paciesas; Robert D. Preece; James Rodi; Nikolai Shaposhnikov; Gerald K. Skinner; D. A. Swartz; Andreas von Kienlin; R. Diehl

The Crab Nebula is the only hard X-ray source in the sky that is both bright enough and steady enough to be easily used as a standard candle. As a result, it has been used as a normalization standard by most X-ray/gamma-ray telescopes. Although small-scale variations in the nebula are well known, since the start of science operations of the Fermi Gamma-ray Burst Monitor (GBM) in 2008 August, a ~7% (70 mCrab) decline has been observed in the overall Crab Nebula flux in the 15-50 keV band, measured with the Earth occultation technique. This decline is independently confirmed in the ~15-50 keV band with three other instruments: the Swift Burst Alert Telescope (Swift/BAT), the Rossi X-ray Timing Explorer Proportional Counter Array (RXTE/PCA), and the Imager on-Board the INTEGRAL Satellite (IBIS). A similar decline is also observed in the ~3-15 keV data from the RXTE/PCA and in the 50-100 keV band with GBM, Swift/BAT, and INTEGRAL/IBIS. The pulsed flux measured with RXTE/PCA since 1999 is consistent with the pulsar spin-down, indicating that the observed changes are nebular. Correlated variations in the Crab Nebula flux on a ~3 year timescale are also seen independently with the PCA, BAT, and IBIS from 2005 to 2008, with a flux minimum in 2007 April. As of 2010 August, the current flux has declined below the 2007 minimum.


Astrophysical Journal Supplement Series | 2014

The Second Fermi GBM Gamma-Ray Burst Catalog: The First Four Years

Andreas von Kienlin; Charles A. Meegan; W. S. Paciesas; P. N. Bhat; E. Bissaldi; M. S. Briggs; J. Michael Burgess; D. Byrne; Vandiver Chaplin; W. Cleveland; V. Connaughton; Andrew C. Collazzi; G. Fitzpatrick; S. Foley; M. H. Gibby; Adam Goldstein; J. Greiner; David Gruber; S. Guiriec; Alexander Jonathan Van Der Horst; C. Kouveliotou; Emily Layden; Sheila McBreen; S. McGlynn; V. Pelassa; Robert D. Preece; Dave Tierney; C. Wilson-Hodge; S. Xiong; George Younes

This is the second of a series of catalogs of gamma-ray bursts (GRBs) observed with the Fermi Gamma-ray Burst Monitor (GBM). It extends the first two-year catalog by two more years, resulting in an overall list of 953 GBM triggered GRBs. The intention of the GBM GRB catalog is to provide information to the community on the most important observables of the GBM detected GRBs. For each GRB the location and main characteristics of the prompt emission, the duration, peak flux and fluence are derived. The latter two quantities are calculated for the 50-300 keV energy band, where the maximum energy release of GRBs in the instrument reference system is observed and also for a broader energy band from 10-1000 keV, exploiting the full energy range of GBMs low-energy detectors. Furthermore, information is given on the settings and modifications of the triggering criteria and exceptional operational conditions during years three and four in the mission. This second catalog is an official product of the Fermi GBM science team, and the data files containing the complete results are available from the High-Energy Astrophysics Science Archive Research Center.


Astrophysical Journal Supplement Series | 2012

The Fermi GBM Gamma-Ray Burst Catalog : The First Two Years

W. S. Paciesas; Charles A. Meegan; Andreas von Kienlin; P. N. Bhat; E. Bissaldi; M. S. Briggs; J. Michael Burgess; Vandiver Chaplin; V. Connaughton; R. Diehl; G. J. Fishman; G. Fitzpatrick; S. Foley; M. H. Gibby; Adam Goldstein; J. Greiner; David Gruber; S. Guiriec; Alexander Jonathan Van Der Horst; R. Marc Kippen; C. Kouveliotou; Giselher G. Lichti; Lin Lin; Sheila McBreen; Robert D. Preece; Dave Tierney; C. Wilson-Hodge

The Fermi Gamma-ray Burst Monitor (GBM) is designed to enhance the scientific return from Fermi in studying gamma-ray bursts (GRBs). In its first two years of operation GBM triggered on 491 GRBs. We summarize the criteria used for triggering and quantify the general characteristics of the triggered GRBs, including their locations, durations, peak flux, and fluence. This catalog is an official product of the Fermi GBM science team, and the data files containing the complete results are available from the High-Energy Astrophysics Science Archive Research Center.


The Astrophysical Journal | 2010

Time-resolved spectroscopy of the three brightest and hardest short gamma-ray bursts observed with the Fermi gamma-ray burst monitor

S. Guiriec; M. S. Briggs; Valerie Connaugthon; E. Kara; F. Daigne; C. Kouveliotou; Alexander Jonathan Van Der Horst; W. S. Paciesas; Charles A. Meegan; P. N. Bhat; S. Foley; E. Bissaldi; Michael Burgess; Vandiver Chaplin; R. Diehl; G. J. Fishman; M. H. Gibby; Adam Goldstein; J. Greiner; David Gruber; Andreas von Kienlin; Marc Kippen; Sheila McBreen; Robert D. Preece; Dave Tierney; C. Wilson-Hodge

From 2008 July to 2009 October, the Gamma-ray Burst Monitor (GBM) on board the Fermi Gamma-ray Space Telescope has detected 320 gamma-ray bursts (GRBs). About 20% of these events are classified as short based on their T90 duration below 2 s. We present here for the first time time-resolved spectroscopy at timescales as short as 2 ms for the three brightest short GRBs observed with GBM. The time-integrated spectra of the events deviate from the Band function, indicating the existence of an additional spectral component, which can be fit by a power law with index ∼-1.5. The time-integrated Epeak values exceed 2 MeV for two of the bursts and are well above the values observed in the brightest long GRBs. Their Epeak values and their low-energy power-law indices (a) confirm that short GRBs are harder than long ones. We find that short GRBs are very similar to long ones, but with light curves contracted in time and with harder spectra stretched toward higher energies. In our time-resolved spectroscopy analysis, we find that the Epeak values range from a few tens of keV up to more than 6MeV. In general, the hardness evolutions during the bursts follow their flux/intensity variations, similar to long bursts. However, we do not always see the Epeak leading the light-curve rises and confirm the zero/short average light-curve spectral lag below 1 MeV, already established for short GRBs. We also find that the time-resolved low-energy power-law indices of the Band function mostly violate the limits imposed by the synchrotron models for both slow and fast electron cooling and may require additional emission processes to explain the data. Finally, we interpreted these observations in the context of the current existing models and emission mechanisms for the prompt emission of GRBs.


Proceedings of SPIE | 2010

eROSITA on SRG

Peter Predehl; Robert Andritschke; W. Becker; Walter Bornemann; H. Bräuninger; H. Brunner; Thomas Boller; Vadim Burwitz; Wolfgang Burkert; Nicolas Clerc; E. Churazov; Diogo Coutinho; Konrad Dennerl; Josef Eder; Valentin Emberger; Tanja Eraerds; Michael J. Freyberg; Peter Friedrich; Maria Fürmetz; A. Georgakakis; Christoph Grossberger; F. Haberl; O. Hälker; Gisela D. Hartner; G. Hasinger; Johannes Hoelzl; Heinrich Huber; Andreas von Kienlin; Walter Kink; Ingo Kreykenbohm

eROSITA (extended ROentgen Survey with an Imaging Telescope Array) is the core instrument on the Russian/German Spektrum-Roentgen-Gamma (SRG) mission which is now officially scheduled for launch on March 26, 2016. eROSITA will perform a deep survey of the entire X-ray sky. In the soft band (0.5-2 keV), it will be about 30 times more sensitive than ROSAT, while in the hard band (2-8 keV) it will provide the first ever true imaging survey of the sky. The design driving science is the detection of large samples of galaxy clusters to redshifts z < 1 in order to study the large scale structure in the universe and test cosmological models including Dark Energy. In addition, eROSITA is expected to yield a sample of a few million AGN, including obscured objects, revolutionizing our view of the evolution of supermassive black holes. The survey will also provide new insights into a wide range of astrophysical phenomena, including X-ray binaries, active stars and diffuse emission within the Galaxy. eROSITA is currently (June 2014) in its flight model and calibration phase. All seven flight mirror modules (+ 1 spare) have been delivered and measured in X-rays. The first camera including the complete electronics has been extensively tested (vacuum + X-rays). A pre-test of the final end-toend test has been performed already. So far, all subsystems and components are well within their expected performances.

Collaboration


Dive into the Andreas von Kienlin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Golenetskii

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

E. Mazets

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

T. L. Cline

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

K. Hurley

University of California

View shared research outputs
Top Co-Authors

Avatar

Kevin C. Hurley

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Thomas L. Cline

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Valentin Pal'Shin

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anton B. Sanin

Russian Federal Space Agency

View shared research outputs
Researchain Logo
Decentralizing Knowledge