Andreas von Tiedemann
University of Göttingen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andreas von Tiedemann.
Environmental Pollution | 1995
William J. Manning; Andreas von Tiedemann
Continued world population growth results in increased emission of gases from agriculture, combustion of fossil fuels, and industrial processes. This causes changes in the chemical composition of the atmosphere. Evidence is emerging that increased solar ultraviolet-B (UV-B) radiation is reaching the earths atmosphere, due to stratospheric ozone depletion. Carbon dioxide (CO(2)), ozone (O(3)) and UV-B are individual climate change factors that have direct biological effects on plants. Such effects may directly or indirectly affect the incidence and severity of plant diseases, caused by biotic agents. Carbon dioxide may increase plant canopy size and density, resulting in a greater biomass of high nutritional quality, combined with a much higher microclimate relative humidity. This would be likely to promote plant diseases such as rusts, powdery mildews, leaf spots and blights. Inoculum potential from greater overwintering crop debris would also be increased. Ozone is likely to have adverse effects on plant growth. Necrotrophic pathogens may colonize plants weakened by O(3) at an accelerated rate, while obligate biotroph infections may be lessened. Ozone is unlikely to have direct adverse effects on fungal pathogens. Ozone effects on plant diseases are host plant mediated. The principal effects of increased UV-B on plant diseases would be via alterations in host plants. Increased flavonoids could lead to increased diseased resistance. Reduced net photosynthesis and premature ripening and senescence could result in a decrease in diseases caused by biotrophs and an increase in those caused by necrotrophs. Microbial plant pathogens are less likely to be adversely affected by CO(2), O(3) and UV-B than are their corresponding host plants. Changes in host plants may result in expectable alterations of disease incidence, depending on host plant growth stages and type of pathogen. Given the importance of plant diseases in world food and fiber production, it is essential to begin studying the effects of increased CO(2), O(3) and UV-B (and other climate change factors) on plant diseases. We know very little about the actual impacts of climate change factors on disease epidemiology. Epidemiologists should be encouraged to consider CO(2), O(3) and UV-B as factors in their field studies.
Environmental Pollution | 2000
S. Chakraborty; Andreas von Tiedemann; P.S Teng
Global climate has changed since pre-industrial times. Atmospheric CO(2), a major greenhouse gas, has increased by nearly 30% and temperature has risen by 0.3 to 0.6 degrees C. The intergovernmental panel on climate change predicts that with the current emission scenario, global mean temperature would rise between 0.9 and 3.5 degrees C by the year 2100. There are, however, many uncertainties that influence these predictions. Despite the significance of weather on plant diseases, comprehensive analysis of how climate change will influence plant diseases that impact primary production in agricultural systems is presently unavailable. Evaluation of the limited literature in this area suggests that the most likely impact of climate change will be felt in three areas: in losses from plant diseases, in the efficacy of disease management strategies and in the geographical distribution of plant diseases. Climate change could have positive, negative or no impact on individual plant diseases. More research is needed to obtain base-line information on different disease systems. Most plant disease models use different climatic variables and operate at a different spatial and temporal scale than do the global climate models. Improvements in methodology are necessary to realistically assess disease impacts at a global scale.
Environmental Pollution | 2002
Yue-Xuan Wu; Andreas von Tiedemann
Two modern fungicides, a strobilurin, azoxystrobin (AZO), and a triazole, epoxiconazole (EPO), applied as foliar spray on spring barley (Hordeum vulgare L. cv. Scarlett) 3 days prior to fumigation with injurious doses of ozone (150-250 ppb; 5 days; 7 h/day) induced a 50-60% protection against ozone injury on leaves. Fungicide treatments of barley plants at growth stage (GS) 32 significantly increased the total leaf soluble protein content. Additionally, activities of the antioxidative enzymes superoxide dismutase (SOD), catalase (CAT), ascorbate-peroxidase (APX) and glutathione reductase (GR) were increased by both fungicides at maximal rates of 16, 75, 51 and 144%, respectively. Guiacol-peroxidase (POX) activity was elevated by 50-110% only in AZO treated plants, while this effect was lacking after treatments with EPO. This coincided with elevated levels of hydrogen peroxide (H2O2) only in EPO and not in AZO treated plants. The enhancement of the plant antioxidative system by the two fungicides significantly and considerably reduced the level of superoxide (O2*-) in leaves. Fumigation of barley plants for 4 days with non-injurious ozone doses (120-150 ppb, 7 h/day) markedly and immediately stimulated O2*- accumulation in leaves, while H2O2 was increased only after the third day of fumigation. Therefore, O2*- itself or as precursor of even more toxic oxyradicals appears to be more indicative for ozone-induced leaf damage than H2O2. Ozone also induced significant increases in the activity of antioxidant enzymes (SOD, POX and CAT) after 2 days of fumigation in fungicide untreated plants, while after 4 days of fumigation these enzymes declined to a level lower than in unfumigated plants, due to the oxidative degradation of leaf proteins. This is the first report demonstrating the marked enhancement of plant antioxidative enzymes and the enhanced scavenging of potentially harmful O2*- by fungicides as a mechanism of protecting plants against noxious oxidative stress from the environment. The antioxidant effect of modern fungicides widely used in intense cereal production in many countries represents an important factor when evaluating potential air pollution effects in agriculture.
Environmental Pollution | 2000
Andreas von Tiedemann; K.H Firsching
Spring wheat (Triticum aestivum L. cv. Turbo) was grown from seedling emergence to maturity (129 days) in chambers simulating the physical climate and ozone pollution of a field site in Northern Germany from 1 April to 31 July with a mean 1-h daily maximum of 61.5-62.4 nl l(-1) ozone compared to a constant low level of 21.5-22.8 nl l(-1) ozone. The two ozone levels were combined with either a current (374.1-380.2 microl l(-1)) or enriched (610.6-615.0 microl l(-1)) CO(2) atmosphere. Additionally, a leaf rust epidemic (Puccinia recondita f. sp. tritici) was induced at tillering stage by repeated re-inoculations with the inoculum formed on the plants. Leaf rust disease was strongly inhibited by ozone, but largely unaffected by elevated CO(2). Ozone damage on leaves was strongly affected by CO(2) and infection. On infected plants, ozone lesions appeared 2-4 weeks earlier and were up to fourfold more severe compared to non-infected plants. Elevated CO(2) did not delay the onset of ozone lesions but it significantly reduced the severity of leaf damage. It also enhanced the photosynthetic rate of flag leaves and increased the water use efficiency, biomass formation and grain yield. The relative increases in growth and yield induced by CO(2) were much larger on ozone-stressed than on non-stressed plants. Both ozone and fungal infection reduced biomass formation, number of grains per plant, thousand grain weight and grain yield; however, adverse effects of leaf rust infection were more severe. Elevated CO(2) largely equalized the negative effects of ozone on the photosynthetic rate, growth and yield parameters, but was not capable of compensating for the detrimental effects of fungal infection. The data imply that the impact of ozone in the field cannot be estimated without considering the predisposing effects deriving from fungal infections and the compensating effects deriving from elevated CO(2).
European Journal of Plant Pathology | 2013
P. Juroszek; Andreas von Tiedemann
This review summarizes the most significant results from the so far existing, but fragmented studies on the potential effects of climate change on wheat pathogens and the diseases they cause. The analysis demonstrates that predictions are uncertain and future disease risk trends must be differentiated on a geographic and time scale. For example, disease incidence of Fusarium head blight in the United Kingdom might increase middle of this century, whereas disease severity of Septoria tritici blotch might decrease in France end of this century. Thus, wheat disease problems caused by a changing climate will probably not consistently worsen, as climatic changes may also improve the crop health situation in wheat depending on the location. The results of long-term simulations of future disease risk must be taken with caution, because different climate models and downscaling methods are used to make the projections and this can create considerable uncertainty. Being aware of this short-coming, plant pathologists recently started to assess the sources of uncertainty related to their long-term disease simulations. However, in spite of this progress there is still a significant lack of simulation studies related to different wheat diseases in various locations that could help to estimate future wheat grain losses due to climatic changes. Many more of these studies are certainly needed. Otherwise, the focus in the climate change debate will remain on the yield loss/gain potential due to changes in the environmental conditions only, which would neglect the important impact of altered biotic constraints such as diseases which are among the key factors in the estimation of future global wheat productivity.
Phytopathology | 2002
Yue-Xuan Wu; Andreas von Tiedemann
ABSTRACT A leaf spot disease with unknown etiology has become more pronounced in spring and winter barley in Germany in recent years. The symptoms are similar to net blotch and Ramularia leaf spots, but the causal agents of these diseases are not identified. The symptom expression varied much on cultivars. Cultivars most affected by the disease of both spring and winter barley showed a significantly higher level of superoxide (O(2) ) production and lipid peroxidation (malondialdehyde), but a lower level of antioxidant potential expressed as superoxide dismutase (SOD) activity, catalase activity, and integral water-soluble antioxidant capacity (ACW) than insensitive cultivars. A high positive correlation between O(2) production and leaf spot development between ear emergence and milk ripeness was established in the most sensitive winter barley cv. Anoa (r(2) = 0.9622) and spring barley cv. Barke (r(2) = 0.9434). Leaf H(2)O(2) levels increased with the severity of leaf spots. The histochemical localization of O(2) and H(2)O(2) in the tissues adjacent to leaf spots indicated that these two active oxygen species (AOS) are involved in the formation of leaf spots. Reduction of symptom severity by applying strobilurin and azole fungicides was always associated with elevated SOD activity and ACW content and suppressed O(2) production. However, peroxidase activities were significantly higher in sensitive cultivars and in more severely affected tissues and decreased by applying fungicides. Thus, it is assumed that a possible genetic mechanism based on the imbalanced AOS metabolism contributes to formation of physiological leaf spots.
Applied Microbiology and Biotechnology | 2010
Seema Singh; Susanna A. Braus-Stromeyer; Christian Timpner; Van Tuan Tran; Gertrud Lohaus; Michael Reusche; Jessica Knüfer; Thomas Teichmann; Andreas von Tiedemann; Gerhard H. Braus
The first leaky auxotrophic mutant for aromatic amino acids of the near-diploid fungal plant pathogen Verticillium longisporum (VL) has been generated. VL enters its host Brassica napus through the roots and colonizes the xylem vessels. The xylem contains little nutrients including low concentrations of amino acids. We isolated the gene Vlaro2 encoding chorismate synthase by complementation of the corresponding yeast mutant strain. Chorismate synthase produces the first branch point intermediate of aromatic amino acid biosynthesis. A novel RNA-mediated gene silencing method reduced gene expression of both isogenes by 80% and resulted in a bradytrophic mutant, which is a leaky auxotroph due to impaired expression of chorismate synthase. In contrast to the wild type, silencing resulted in increased expression of the cross-pathway regulatory gene VlcpcA (similar to cpcA/GCN4) during saprotrophic life. The mutant fungus is still able to infect the host plant B. napus and the model Arabidopsis thaliana with reduced efficiency. VlcpcA expression is increased in planta in the mutant and the wild-type fungus. We assume that xylem colonization requires induction of the cross-pathway control, presumably because the fungus has to overcome imbalanced amino acid supply in the xylem.
Phytopathology | 2004
Yue-Xuan Wu; Andreas von Tiedemann
ABSTRACT We reported previously that physiological leaf spot (PLS) formation in winter and spring barley is dependent on genotype-related oxidative stress under field conditions. In the present study, we searched for factors inducing PLS symptoms in the greenhouse similar to those observed in the field and investigated its relationship to reactive oxygen species (ROS) metabolism. We found that in the greenhouse, oxidative stress induced spring barley cv. Extract, which is sensitive to PLS, to express symptoms similar to those observed in the field. Leaves severely affected by PLS showed significantly lower activities of key enzymes in the Halliwell-Asada cycle such as ascorbate peroxidase, glutathione reductase, dehy-droascorbate reductase, and monodehydroascorbate reductase. The sensitive cultivar also showed lower levels of total superoxide dismutase (SOD) and Cu/Zn-SOD activity but a higher level of chloroplast-specific Fe-SOD activity than that of the insensitive cultivar. Thus, an unbalanced ROS metabolism in chloroplasts may trigger PLS incidence in sensitive cultivars, which is in agreement with the fact that light is essential for the induction of PLS expression under both field and greenhouse conditions. Accordingly, under greenhouse conditions, continuous light stress (7 days), but not light shock treatments, induced PLS similar to that of field conditions in sensitive cv. Extract, but not in resistant cv. Scarlett. Light with a high proportion of energy in the blue wavelength spectrum (350 to 560 nm) was significantly more PLS inductive than light with a pronounced red (photosynthetically active radiation) spectrum (580 to 650 nm). Exposure to ozone did not produce PLS-like symptoms. Furthermore, similar to earlier observations in the field, PLS symptom expression was closely correlated with the accumulation of superoxide (O(2) (-)) detected by both biochemical and histochemical assays. Taken together, these data suggest that PLS in barley is genotype-dependent but its expression appears to be induced by certain environmental stress factors, among which photosyn-thetically active radiation plays a major role.
The Journal of Antibiotics | 2011
Muna Ali Abdalla; Hnin Yu Win; Md. Tofazzal Islam; Andreas von Tiedemann; Anja Schüffler; Hartmut Laatsch
In the course of our screening for anti-peronosporomycetal agents, we isolated a new compound khatmiamycin (1), together with five known metabolites, GTRI-02 (3), 4-ethyl-5-methyl-heptanamide (4), aloesaponarin II (5), LL-C10037α (6) and LL-C10037β (7) from the culture broth of a terrestrial Streptomyces sp. ANK313. The structures of these metabolites were assigned on the basis of their spectroscopic data. Khatmiamycin (1) exhibited potent motility inhibitory (100%) and lytic (83±7%) activities against zoospores of the grapevine downy mildew pathogen Plasmopara viticola at 10 μg ml−1, followed by compounds 5 (MIC 25 μg ml−1), 7, 6, 3 in the order of decreasing activity. Khatmiamycin (1) also showed potent antibacterial activity against Staphylococcus aureus and Streptomyces viridochromogenes (Tü57) by causing inhibition zones of 11 and 14 mm diameter, respectively, at the dose of 40 μg per disk. This is the first report on motility inhibitory and lytic activities of metabolites from a terrestrial Streptomyces species against the zoospores of downy mildew pathogen P. viticola.
Environmental Pollution | 1991
Andreas von Tiedemann; H.-J. Weigel; H.-J. Jäger
Spring wheat (Triticum aestivum L. cv. Turbo) was exposed in open-top chambers to six different ozone levels (8-h daily means from 12.4 to 122 microg m(-3)), to non-filtered air and to chamberless field conditions for 31 days from seedling stage through ear emergence. Powdery mildew (Erysiphe graminis DC. f.sp. tritici Marchal) which developed during the exposure period was significantly enhanced from 0.3/0.6% (two chamber replicates), 1.2/2.1%, 0.9/2.2% in charcoal-filtered air (CF) to 1.5/1.6%, 3.7/4.3%, 4.4/4.6% at the highest level of ozone, on the flag leaf, second and third leaf position, respectively. Post-exposure inoculation with Septoria nodorum Berk. led to increases of disease severity on the flag leaf from 40.9/43.6% in CF to 66.3/70.6% at the highest ozone concentration and on the ears from 15.7/16.5% to 26.3/26.6%. In the same comparison, severity of spot blotch following inoculation with Bipolaris sorokiniana (Sacc.) Shoem. (syn. Helminthosporium sativum Pamm., King et Bakke) was increased on the flag leaf from 3.6/8.9% to 12.3/23.4%. The three diseases examined correlated significantly with the ozone treatments in fumigated chambers. Disease severity was enhanced even on undamaged plant tissue (flag leaves). Infections of the two facultative pathogens on lower leaf positions started only in part from visible ozone lesions, mildew did not start from such lesions. No significant effects of ozone in the chambers on the saprobial colonization of the phyllosphere were detected, whereas there were marked differences in this respect between plants from the field and the chambers. At the highest ozone treatment, contents of chlorophyll a and carotenoids on the second leaf position declined significantly, which was associated with symptoms of premature senescence. Senescing effects of ozone are therefore assumed to be one major factor in predisposing wheat for necrotrophic leaf pathogens. Surprisingly, injurious and predisposing effects of ozone were completely absent in chambers supplied with non-filtered air containing ambient ozone at doses equivalent to those in CF + ozone chambers. Evidently, biological effects of ozone in pure air and in ambient air may differ markedly.