Andreas W. Schell
Kyoto University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andreas W. Schell.
Applied Physics Letters | 2010
Janik Wolters; Andreas W. Schell; Günter Kewes; Nils Nüsse; Max Schoengen; Henning Döscher; Thomas Hannappel; Bernd Löchel; Michael Barth; Oliver Benson
Using a nanomanipulation technique a nanodiamond with a single nitrogen vacancy center is placed directly on the surface of a gallium phosphide photonic crystal cavity. A Purcell-enhancement of the fluorescence emission at the zero phonon line (ZPL) by a factor of 12.1 is observed. The ZPL coupling is a first crucial step toward future diamond-based integrated quantum optical devices.
Nano Letters | 2011
Tim Schröder; Andreas W. Schell; Günter Kewes; Thomas Aichele; Oliver Benson
An alignment free, micrometer-scale single photon source consisting of a single quantum emitter on an optical fiber operating at room temperature is demonstrated. It easily integrates into fiber optic networks for quantum cryptography or quantum metrology applications.(1) Near-field coupling of a single nitrogen-vacancy center is achieved in a bottom-up approach by placing a preselected nanodiamond directly on the fiber facet. Its high photon collection efficiency is equivalent to a far-field collection via an objective with a numerical aperture of 0.82. Furthermore, simultaneous excitation and re-collection through the fiber is possible by introducing a fiber-connected single emitter sensor.
Optics Express | 2011
Andreas W. Schell; Günter Kewes; Tobias Hanke; Alfred Leitenstorfer; Rudolf Bratschitsch; Oliver Benson; Thomas Aichele
We present two applications of a single nitrogen vacancy center in a nanodiamond as quantum probe for plasmonic nanostructures. Coupling to the nanostructures is achieved in a highly controlled manner by picking up a pre-characterized nanocrystal with an atomic force microscope and placing it at the desired position. Local launching of single excitations into a nanowire with a spatial control of few nanometers is demonstrated. Further, a two dimensional map of the electromagnetic environment of a plasmonic bowtie antenna was derived, resembling an ultimate limit of fluorescence lifetime nanoscopy.
Scientific Reports | 2013
Andreas W. Schell; Johannes Kaschke; Joachim Fischer; Rico Henze; Janik Wolters; Martin Wegener; Oliver Benson
To fully integrate quantum optical technology, active quantum systems must be combined with resonant microstructures and optical interconnects harvesting and routing photons in three diemsnsions (3D) on one chip. We fabricate such combined structures for the first time by using two-photon laser lithography and a photoresist containing nanodiamonds including nitrogen vacancy-centers. As an example for possible functionality, single-photon generation, collection, and transport is successfully accomplished. The single photons are efficiently collected via resonators and routed in 3D through waveguides, all on one optical chip. Our one-step fabrication scheme is easy to implement, scalable and flexible. Thus, other complex assemblies of 3D quantum optical structures are feasible as well.
Applied Physics Letters | 2014
Lars Liebermeister; Fabian Petersen; Asmus v. Münchow; Daniel Burchardt; Juliane Hermelbracht; Toshiyuki Tashima; Andreas W. Schell; Oliver Benson; Thomas Meinhardt; Anke Krueger; Ariane Stiebeiner; Harald Weinfurter; Markus Weber
A diamond nano-crystal hosting a single nitrogen vacancy (NV) center is optically selected with a confocal scanning microscope and positioned deterministically onto the subwavelength-diameter waist of a tapered optical fiber (TOF) with the help of an atomic force microscope. Based on this nano-manipulation technique, we experimentally demonstrate the evanescent coupling of single fluorescence photons emitted by a single NV-center to the guided mode of the TOF. By comparing photon count rates of the fiber-guided and the free-space modes and with the help of numerical finite-difference time domain simulations, we determine a lower and upper bound for the coupling efficiency of (9.5 ± 0.6)% and (10.4 ± 0.7)%, respectively. Our results are a promising starting point for future integration of single photon sources into photonic quantum networks and applications in quantum information science.
Physical Review Letters | 2013
Janik Wolters; Nikola Sadzak; Andreas W. Schell; Tim Schröder; Oliver Benson
Spectral diffusion is the phenomenon of random jumps in the emission wavelength of narrow lines. This phenomenon is a major hurdle for applications of solid state quantum emitters like quantum dots, molecules or diamond defect centers in an integrated quantum optical technology. Here, we provide further insight into the underlying processes of spectral diffusion of the zero phonon line of single nitrogen vacancy centers in nanodiamonds by using a novel method based on photon correlation interferometry. The method works although the spectral diffusion rate is several orders of magnitude higher than the photon detection rate and thereby improves the time resolution of previous experiments with nanodiamonds by six orders of magnitude. We study the dependency of the spectral diffusion rate on the excitation power, temperature, and excitation wavelength under off-resonant excitation. Our results bring insight into the mechanism of spectral diffusion and suggest a strategy to increase the number of spectrally indistinguishable photons emitted by diamond nanocrystals.
Review of Scientific Instruments | 2011
Andreas W. Schell; Günter Kewes; Tim Schröder; Janik Wolters; Thomas Aichele; Oliver Benson
Integrated quantum optical hybrid devices consist of fundamental constituents such as single emitters and tailored photonic nanostructures. A reliable fabrication method requires the controlled deposition of active nanoparticles on arbitrary nanostructures with highest precision. Here, we describe an easily adaptable technique that employs picking and placing of nanoparticles with an atomic force microscope combined with a confocal setup. In this way, both the topography and the optical response can be monitored simultaneously before and after the assembly. The technique can be applied to arbitrary particles. Here, we focus on nanodiamonds containing single nitrogen vacancy centers, which are particularly interesting for quantum optical experiments on the single photon and single emitter level.
Nanotechnology | 2009
Matthias D. Wissert; Andreas W. Schell; Konstantin Ilin; M. Siegel; Hans-Jürgen Eisler
In this paper we present our approach for engineering gold dipole nanoantennas. Using electron-beam lithography we have been able to produce arrays of single gold antennas with dimensions from 70 to 300 nm total length with a highly reproducible nanoengineering protocol. Characterizing these gold nanoantenna architectures by optical means via dark-field microscopy and scattering spectroscopy gives the linear optical response function as a figure-of-merit for the antenna resonances, spectral linewidth and integrated scattering intensity. We observe an enhanced integrated scattering probability for two arm gold dipole nanoantennas with an antenna feed gap compared to antennas of the size of one arm without a gap.
Nano Letters | 2014
Andreas W. Schell; Philip Engel; Julia F. M. Werra; Christian Wolff; Kurt Busch; Oliver Benson
Their intrinsic properties render single quantum systems as ideal tools for quantum enhanced sensing and microscopy. As an additional benefit, their size is typically on an atomic scale that enables sensing with very high spatial resolution. Here, we report on utilizing a single nitrogen vacancy center in nanodiamond for performing three-dimensional scanning-probe fluorescence lifetime imaging microscopy. By measuring changes of the single emitters lifetime, information on the local density of optical states is acquired at the nanoscale. Three-dimensional ab initio discontinuous Galerkin time-domain simulations are used in order to verify the results and to obtain additional insights. This combination of experiment and simulations to gather quantitative information on the local density of optical states is of direct relevance for the understanding of fundamental quantum optical processes as well as for the engineering of novel photonic and plasmonic devices.
Nano Letters | 2015
Oliver Neitzke; Anthony J. Morfa; Janik Wolters; Andreas W. Schell; Günter Kewes; Oliver Benson
Finding new solid state defect centers in novel host materials is crucial for realizing integrated hybrid quantum photonic devices. We present a preparation method for defect centers with photostable bright single photon emission in zinc oxide, a material with promising properties in terms of processability, availability, and applications. A detailed optical study reveals a complex dynamic of intensity fluctuations at room temperature. Measurements at cryogenic temperatures show very sharp (<60 GHz) zero phonon lines (ZPLs) at 580 nm to 620 nm (≈ 2.0 eV) with frozen out fast fluctuations. Remaining discrete jumps of the ZPL, which depend on the excitation power, are observed. The low temperature results will narrow down speculations on the origin of visible-near-infrared (NIR) wavelength defect emission in zinc oxide and provide a basis for improved theoretical models.