Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andreas Weizbauer is active.

Publication


Featured researches published by Andreas Weizbauer.


Biomedical Engineering Online | 2013

Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: short term results of the first prospective, randomized, controlled clinical pilot study

Henning Windhagen; Kerstin Radtke; Andreas Weizbauer; Julia Diekmann; Yvonne Noll; Ulrike Kreimeyer; Robert Schavan; Christina Stukenborg-Colsman; Hazibullah Waizy

PurposeNondegradable steel-and titanium-based implants are commonly used in orthopedic surgery. Although they provide maximal stability, they are also associated with interference on imaging modalities, may induce stress shielding, and additional explantation procedures may be necessary. Alternatively, degradable polymer implants are mechanically weaker and induce foreign body reactions. Degradable magnesium-based stents are currently being investigated in clinical trials for use in cardiovascular medicine. The magnesium alloy MgYREZr demonstrates good biocompatibility and osteoconductive properties. The aim of this prospective, randomized, clinical pilot trial was to determine if magnesium-based MgYREZr screws are equivalent to standard titanium screws for fixation during chevron osteotomy in patients with a mild hallux valgus.MethodsPatients (n=26) were randomly assigned to undergo osteosynthesis using either titanium or degradable magnesium-based implants of the same design. The 6 month follow-up period included clinical, laboratory, and radiographic assessments.ResultsNo significant differences were found in terms of the American Orthopaedic Foot and Ankle Society (AOFAS) score for hallux, visual analog scale for pain assessment, or range of motion (ROM) of the first metatarsophalangeal joint (MTPJ). No foreign body reactions, osteolysis, or systemic inflammatory reactions were detected. The groups were not significantly different in terms of radiographic or laboratory results.ConclusionThe radiographic and clinical results of this prospective controlled study demonstrate that degradable magnesium-based screws are equivalent to titanium screws for the treatment of mild hallux valgus deformities.


Journal of Materials Science | 2013

Biodegradable magnesium implants for orthopedic applications

Hazibullah Waizy; Jan-Marten Seitz; Janin Reifenrath; Andreas Weizbauer; Friedrich-Wilhelm Bach; Andrea Meyer-Lindenberg; Berend Denkena; Henning Windhagen

The clinical application of degradable orthopedic magnesium implants is a tangible vision in medical science. This interdisciplinary review discusses many different aspects of magnesium alloys comprising the manufacturing process and the latest research. We present the challenges of the manufacturing process of magnesium implants with the risk of contamination with impurities and its effect on corrosion. Furthermore, this paper provides a summary of the current examination methods used in in vitro and in vivo research of magnesium alloys. The influence of various parameters (most importantly the effect of the corrosive media) in in vitro studies and an overview about the current in vivo research is given.


Journal of Biomaterials Applications | 2014

In vivo study of a biodegradable orthopedic screw (MgYREZr-alloy) in a rabbit model for up to 12 months

Hazibullah Waizy; Julia Diekmann; Andreas Weizbauer; Janin Reifenrath; Ivonne Bartsch; Volkmar Neubert; Robert Schavan; Henning Windhagen

Biodegradable magnesium-based implants are currently being developed for use in orthopedic applications. The aim of this study was to investigate the acute, subacute, and chronic local effects on bone tissue as well as the systemic reactions to a magnesium-based (MgYREZr-alloy) screw containing rare earth elements. The upper part of the screw was implanted into the marrow cavity of the left femora of 15 adult rabbits (New Zealand White), and animals were euthanized 1 week, 12 weeks, and 52 weeks postoperatively. Blood samples were analyzed at set times, and radiographic examinations were performed to evaluate gas formation. There were no significant increased changes in blood values compared to normal levels. Histological examination revealed moderate bone formation with direct implant contact without a fibrous capsule. Histopathological evaluation of lung, liver, intestine, kidneys, pancreas, and spleen tissue samples showed no abnormalities. In summary, our data indicate that these magnesium-based screws containing rare earth elements have good biocompatibility and osteoconductivity without acute, subacute, or chronic toxicity.


Biomedical Engineering Online | 2012

In vitro corrosion of ZEK100 plates in Hank's Balanced Salt Solution

Hazibullah Waizy; Andreas Weizbauer; Christian Modrejewski; Frank Witte; Henning Windhagen; Arne Lucas; Marc Kieke; Berend Denkena; Peter Behrens; Andrea Meyer-Lindenberg; Friedrich-Wilhelm Bach; Fritz Thorey

BackgroundIn recent years magnesium alloys have been intensively investigated as potential resorbable materials with appropriate mechanical and corrosion properties. Particularly in orthopedic research magnesium is interesting because of its mechanical properties close to those of natural bone, the prevention of both stress shielding and removal of the implant after surgery.MethodsZEK100 plates were examined in this in vitro study with Hanks Balanced Salt Solution under physiological conditions with a constant laminar flow rate. After 14, 28 and 42 days of immersion the ZEK100 plates were mechanically tested via four point bending test. The surfaces of the immersed specimens were characterized by SEM, EDX and XRD.ResultsThe four point bending test displayed an increased bending strength after 6 weeks immersion compared to the 2 week group and 4 week group. The characterization of the surface revealed the presence of high amounts of O, P and Ca on the surface and small Mg content. This indicates the precipitation of calcium phosphates with low solubility on the surface of the ZEK100 plates.ConclusionsThe results of the present in vitro study indicate that ZEK100 is a potential candidate for degradable orthopedic implants. Further investigations are needed to examine the degradation behavior.


Journal of Orthopaedic Research | 2016

Early results using a biodegradable magnesium screw for modified chevron osteotomies: MG SHORT TERM

Christian Plaass; Sarah Ettinger; Lena Sonnow; Soeren Koenneker; Yvonne Noll; Andreas Weizbauer; Janin Reifenrath; Leif Claassen; Kiriakos Daniilidis; Christina Stukenborg-Colsman; Henning Windhagen

This is the first larger study analyzing the use of magnesium‐based screws for fixation of modified Chevron osteotomies in hallux valgus surgery. Forty‐four patients (45 feet) were included in this prospective study. A modified Chevron osteotomy was performed on every patient and a magnesium screw used for fixation. The mean clinical follow up was 21.4 weeks. The mean age of the patients was 45.5 years. Forty patients could be provided with the implant, in four patients the surgeon decided to change to a standard metallic implant. The AOFAS, FAAM and pain NRS‐scale improved markedly. The hallux valgus angle, intermetatarsal angle and sesamoid position improved significantly. Seven patients showed dorsal subluxation, rotation or medial shifting of the metatarsal heads within the first 3 months. One of these patients was revised, in all others the findings were considered clinically not significant or the patients refused revision. This study shows the feasibility of using magnesium screws in hallux valgus‐surgery. Surgeons starting with the use of these implants should be aware of the proper handling of these implants and should know about corrosion effects during healing and its radiographic appearance.


Materials Science and Engineering: C | 2016

Examination of a biodegradable magnesium screw for the reconstruction of the anterior cruciate ligament: A pilot in vivo study in rabbits

Julia Diekmann; Sylvie Bauer; Andreas Weizbauer; Elmar Willbold; Henning Windhagen; Patrick Helmecke; Arne Lucas; Janin Reifenrath; Ingo Nolte; Marco Ezechieli

The reconstruction of the anterior cruciate ligament is, for the most part, currently performed with interference screws made of titanium or degradable polymers. The aim of this study was to investigate the use of biodegradable magnesium interference screws for such a procedure because of their known biocompatibility and reported osteoconductive effects. The left tibiae of each of 18 rabbits were implanted with a magnesium-based (MgYREZr-alloy) screw, and another 18 with a titanium-based control. Each group was divided into observation periods of 4, 12 and 24weeks. After sacrifice, μCT scans were acquired to assess the amount of the gas liberated and the degradation rate of the implant. Histological evaluations were performed to investigate the local tissue response adjacent to the implant and to assess the status of the attachment between the tendon and the bone tissue. The μCT scans showed that liberation of gas was most prominent 4weeks after implantation and was significantly decreased by 24weeks. All screws remained in situ and formed a sufficient connection with the tendon and sufficient osseous integration at 24weeks. Histological evaluations showed neither inflammatory reactions nor necrosis of the tendon. The results of this pilot study in rabbits indicate that this magnesium-based interference screw should be considered as an alternative to conventional implant materials.


Materials Science and Engineering: C | 2016

Corrosion behavior, biocompatibility and biomechanical stability of a prototype magnesium-based biodegradable intramedullary nailing system.

Manuel Krämer; Markus Schilling; Rainer Eifler; Britta Hering; Janin Reifenrath; Silke Besdo; Henning Windhagen; Elmar Willbold; Andreas Weizbauer

Implants made of degradable magnesium alloys are a potential alternative to conventional orthopaedic implant materials, e.g. stainless steel or titanium. Intramedullary nails made of the magnesium alloy LAE442 were subjected to cyclic fatigue tests in both distilled water and Hanks Balanced Salt Solution (HBSS) at 37.5°C until implant failure or a limit of 500,000cycles was reached. In distilled water, four of the five nails were still intact after the end of the biomechanical test. In HBSS, a breakage within the first 70,000 bending cycles was observed. Additionally, the degradation rate of this alloy was determined in HBSS according to the weight loss method (0.24±0.12mmyear(-1)) and based on gas release (0.21±0.03mmyear(-1)) with a standard eudiometer. A cytotoxicity test with L929 cells was carried out in accordance with EN ISO 10993-5/12. This test demonstrated sufficient cell viability of the diluted extracts (50%, 25% and 12.5%). The relative metabolic activity of the 100% extract was reduced slightly below 70%, which is classified as a threshold value for cytotoxicity. In conclusion, this in vitro study indicates that intramedullary nails made of LAE442 may not have the required fatigue resistance for load-bearing applications and the development of a corrosion-protective coating may be necessary to prevent early failure of the implant.


Journal of Biomaterials Applications | 2014

Comparative in vitro study and biomechanical testing of two different magnesium alloys.

Andreas Weizbauer; Christian Modrejewski; Sabine Behrens; Helmut Klein; Patrick Helmecke; Jan-Marten Seitz; Henning Windhagen; Kai Möhwald; Janin Reifenrath; Hazibullah Waizy

In this in vitro study, magnesium plates of ZEK100 and MgCa0.8 alloy similar to common titanium alloy osteosynthesis plates were investigated as degradable biomedical materials with a focus on primary stability. Immersion tests were performed in Hank’s Balanced Salt Solution at 37℃. The bending strength of the samples was determined using the four-point bending test according to ISO 9585:1990. The initial strength of the noncorroded ZEK100 plate was 11% greater than that of the MgCa0.8 plate; both were approximately 65% weaker than a titanium plate. The bending strength was determined after 48 and 96 h of immersion in Hank’s Balanced Salt Solution; both magnesium alloys decreased by approximately 7% after immersion for 96 h. The degradation rate and the Mg2+ release of ZEK100 were lower than those of MgCa0.8. Strong pitting and filiform corrosion were observed in the MgCa0.8 samples after 96 h of immersion. The surface of the ZEK100 plates exhibited only small areas of filiform corrosion. The results of this in vitro study indicate that the ZEK100 alloy may be more suitable for biomedical applications.


Materials Science and Engineering: C | 2014

Novel magnesium alloy Mg–2La caused no cytotoxic effects on cells in physiological conditions

Andreas Weizbauer; Jan-Marten Seitz; Peter Werle; Jan Hegermann; Elmar Willbold; Rainer Eifler; Henning Windhagen; Janin Reifenrath; Hazibullah Waizy

Using several different in vitro assays, a new biodegradable magnesium alloy Mg-2La, composed of 98% magnesium and 2% lanthanum, was investigated as a possible implant material for biomedical applications. An in vitro cytotoxicity test, according to EN ISO 10993-5/12, with L929 and human osteoblastic cells identified no toxic effects on cell viability at physiological concentrations (at 50% dilutions and higher). The metabolic activity of human osteoblasts in the 100% extract was decreased to <70% and was therefore rated as cytotoxic. The degradation rates of Mg-2La were evaluated in phosphate buffered saline and four different cell culture media. The degradation rates were shown to be influenced by the composition of the solution, and the addition of fetal bovine serum slightly accelerated the corrosive process. The results of these in vitro experiments suggest that Mg-2La is a promising candidate for use as an orthopedic implant material.


Biomedical Materials | 2015

In vitro and in vivo corrosion of the novel magnesium alloy Mg-La-Nd-Zr: influence of the measurement technique and in vivo implant location.

Janin Reifenrath; Marten Ak; Nina Angrisani; Rainer Eifler; Andreas Weizbauer

For the evaluation of new magnesium-based alloys, many different in vitro and in vivo methods are used. It was the aim of the current study to perform in vitro and in vivo corrosion studies of the new alloy Mg-La-Nd-Zr for its evaluation as a promising new degradable material and to compare commonly used evaluation methods. Die casted and subsequent extruded cylindrical pins (Ø1.5 mm; length 7 mm, [Formula: see text]) were implanted subcutaneously ([Formula: see text]), intramuscular ([Formula: see text]) and intramedullary ([Formula: see text]) in female Lewis rats with a postoperative follow up of 8 weeks; subsequent μ-computed tomographical analyses (XTremeCT and μCT80) were performed as well as weight analysis prior to and after implantation. Cubes (5 mm  ×  4 mm  ×  4 mm; surface area, 1.12 cm(2); [Formula: see text]) were used for in vitro corrosion (HBSS and RPMI 1640 + 10% FBS medium) and cytocompatibility studies (L929 cells). First of all it could be stated that implant location strongly influences the in vivo corrosion rate. In particular, intramedullary implanted pins corroded faster than pins in a subcutaneous or intramuscular environment. Considering the different evaluation methods, the calculated ex vivo μCT-based corrosion rates resulted in comparable values to the corrosion rates calculated by the weight loss method, especially after chromatic acid treatment of the explanted pins. The in vitro methods used tend to show similar corrosion rates compared to in vivo corrosion, especially when a RPMI medium was used, and therefore are suitable to predict corrosion trends prior to in vivo studies. Regarding cytocompatibility, the novel magnesium alloy Mg-La-Nd-Zr showed sufficient cell viability and therefore can be considered as a promising alloy for further applications.

Collaboration


Dive into the Andreas Weizbauer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan-Marten Seitz

Michigan Technological University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge