Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andreas Wittgens is active.

Publication


Featured researches published by Andreas Wittgens.


Microbial Cell Factories | 2011

Growth independent rhamnolipid production from glucose using the non-pathogenic Pseudomonas putida KT2440

Andreas Wittgens; Till Tiso; Torsten T Arndt; Pamela Wenk; Johannes Hemmerich; Carsten Müller; Rolf Wichmann; Benjamin Küpper; Michaela Zwick; Susanne Wilhelm; Rudolf Hausmann; Christoph Syldatk; Frank Rosenau; Lars M. Blank

BackgroundRhamnolipids are potent biosurfactants with high potential for industrial applications. However, rhamnolipids are currently produced with the opportunistic pathogen Pseudomonas aeruginosa during growth on hydrophobic substrates such as plant oils. The heterologous production of rhamnolipids entails two essential advantages: Disconnecting the rhamnolipid biosynthesis from the complex quorum sensing regulation and the opportunity of avoiding pathogenic production strains, in particular P. aeruginosa. In addition, separation of rhamnolipids from fatty acids is difficult and hence costly.ResultsHere, the metabolic engineering of a rhamnolipid producing Pseudomonas putida KT2440, a strain certified as safety strain using glucose as carbon source to avoid cumbersome product purification, is reported. Notably, P. putida KT2440 features almost no changes in growth rate and lag-phase in the presence of high concentrations of rhamnolipids (> 90 g/L) in contrast to the industrially important bacteria Bacillus subtilis, Corynebacterium glutamicum, and Escherichia coli. P. putida KT2440 expressing the rhlAB-genes from P. aeruginosa PAO1 produces mono-rhamnolipids of P. aeruginosa PAO1 type (mainly C10:C10). The metabolic network was optimized in silico for rhamnolipid synthesis from glucose. In addition, a first genetic optimization, the removal of polyhydroxyalkanoate formation as competing pathway, was implemented. The final strain had production rates in the range of P. aeruginosa PAO1 at yields of about 0.15 g/gglucose corresponding to 32% of the theoretical optimum. Whats more, rhamnolipid production was independent from biomass formation, a trait that can be exploited for high rhamnolipid production without high biomass formation.ConclusionsA functional alternative to the pathogenic rhamnolipid producer P. aeruginosa was constructed and characterized. P. putida KT24C1 pVLT31_rhlAB featured the highest yield and titer reported from heterologous rhamnolipid producers with glucose as carbon source. Notably, rhamnolipid production was uncoupled from biomass formation, which allows optimal distribution of resources towards rhamnolipid synthesis. The results are discussed in the context of rational strain engineering by using the concepts of synthetic biology like chassis cells and orthogonality, thereby avoiding the complex regulatory programs of rhamnolipid production existing in the natural producer P. aeruginosa.


Metabolic Engineering Communications | 2016

Creating metabolic demand as an engineering strategy in Pseudomonas putida – Rhamnolipid synthesis as an example

Till Tiso; Petra Sabelhaus; Beate Behrens; Andreas Wittgens; Frank Rosenau; Heiko Hayen; Lars M. Blank

Metabolic engineering of microbial cell factories for the production of heterologous secondary metabolites implicitly relies on the intensification of intracellular flux directed toward the product of choice. Apart from reactions following peripheral pathways, enzymes of the central carbon metabolism are usually targeted for the enhancement of precursor supply. In Pseudomonas putida, a Gram-negative soil bacterium, central carbon metabolism, i.e., the reactions required for the synthesis of all 12 biomass precursors, was shown to be regulated at the metabolic level and not at the transcriptional level. The bacteriums central carbon metabolism appears to be driven by demand to react rapidly to ever-changing environmental conditions. In contrast, peripheral pathways that are only required for growth under certain conditions are regulated transcriptionally. In this work, we show that this regulation regime can be exploited for metabolic engineering. We tested this driven-by-demand metabolic engineering strategy using rhamnolipid production as an example. Rhamnolipid synthesis relies on two pathways, i.e., fatty acid de novo synthesis and the rhamnose pathway, providing the required precursors hydroxyalkanoyloxy-alkanoic acid (HAA) and activated (dTDP-)rhamnose, respectively. In contrast to single-pathway molecules, rhamnolipid synthesis causes demand for two central carbon metabolism intermediates, i.e., acetyl-CoA for HAA and glucose-6-phosphate for rhamnose synthesis. Following the above-outlined strategy of driven by demand, a synthetic promoter library was developed to identify the optimal expression of the two essential genes (rhlAB) for rhamnolipid synthesis. The best rhamnolipid-synthesizing strain had a yield of 40% rhamnolipids on sugar [CmolRL/CmolGlc], which is approximately 55% of the theoretical yield. The rate of rhamnolipid synthesis of this strain was also high. Compared to an exponentially growing wild type, the rhamnose pathway increased its flux by 300%, whereas the flux through de novo fatty acid synthesis increased by 50%. We show that the central carbon metabolism of P. putida is capable of meeting the metabolic demand generated by engineering transcription in peripheral pathways, thereby enabling a significant rerouting of carbon flux toward the product of interest, in this case, rhamnolipids of industrial interest.


AMB Express | 2016

Integrated foam fractionation for heterologous rhamnolipid production with recombinant Pseudomonas putida in a bioreactor

Janina Beuker; Anke Steier; Andreas Wittgens; Frank Rosenau; Marius Henkel; Rudolf Hausmann

Heterologeous production of rhamnolipids in Pseudomonas putida is characterized by advantages of a non-pathogenic host and avoidance of the native quorum sensing regulation in Pseudomonas aeruginosa. Yet, downstream processing is a major problem in rhamnolipid production and increases in complexity at low rhamnolipid titers and when using chemical foam control. This leaves the necessity of a simple concentrating and purification method. Foam fractionation is an elegant method for in situ product removal when producing microbial surfactants. However, up to now in situ foam fractionation is nearly exclusively reported for the production of surfactin with Bacillus subtilis. So far no cultivation integrated foam fractionation process for rhamnolipid production has been reported. This is probably due to excessive bacterial foam enrichment in that system. In this article a simple integrated foam fractionation process is reported for heterologous rhamnolipid production in a bioreactor with easily manageable bacterial foam enrichments. Rhamnolipids were highly concentrated in the foam during the cultivation process with enrichment factors up to 200. The described process was evaluated at different pH, media compositions and temperatures. Foam fractionation processes were characterized by calculating procedural parameter including rhamnolipid and bacterial enrichment, rhamnolipid recovery, YX/S, YP/X, and specific as well as volumetric productivities. Comparing foam fractionation parameters of the rhamnolipid process with the surfactin process a high effectiveness of the integrated foam fractionation for rhamnolipid production was demonstrated.


Applied Microbiology and Biotechnology | 2017

Novel insights into biosynthesis and uptake of rhamnolipids and their precursors

Andreas Wittgens; Filip Kovacic; Markus Müller; Melanie Gerlitzki; Beatrix Santiago-Schübel; Diana Hofmann; Till Tiso; Lars M. Blank; Marius Henkel; Rudolf Hausmann; Christoph Syldatk; Susanne Wilhelm; Frank Rosenau

The human pathogenic bacterium Pseudomonas aeruginosa produces rhamnolipids, glycolipids with functions for bacterial motility, biofilm formation, and uptake of hydrophobic substrates. Rhamnolipids represent a chemically heterogeneous group of secondary metabolites composed of one or two rhamnose molecules linked to one or mostly two 3-hydroxyfatty acids of various chain lengths. The biosynthetic pathway involves rhamnosyltransferase I encoded by the rhlAB operon, which synthesizes 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs) followed by their coupling to one rhamnose moiety. The resulting mono-rhamnolipids are converted to di-rhamnolipids in a third reaction catalyzed by the rhamnosyltransferase II RhlC. However, the mechanism behind the biosynthesis of rhamnolipids containing only a single fatty acid is still unknown. To understand the role of proteins involved in rhamnolipid biosynthesis the heterologous expression of rhl-genes in non-pathogenic Pseudomonas putida KT2440 strains was used in this study to circumvent the complex quorum sensing regulation in P. aeruginosa. Our results reveal that RhlA and RhlB are independently involved in rhamnolipid biosynthesis and not in the form of a RhlAB heterodimer complex as it has been previously postulated. Furthermore, we demonstrate that mono-rhamnolipids provided extracellularly as well as HAAs as their precursors are generally taken up into the cell and are subsequently converted to di-rhamnolipids by P. putida and the native host P. aeruginosa. Finally, our results throw light on the biosynthesis of rhamnolipids containing one fatty acid, which occurs by hydrolyzation of typical rhamnolipids containing two fatty acids, valuable for the production of designer rhamnolipids with desired physicochemical properties.


Applied Microbiology and Biotechnology | 2018

Heterologous production of long-chain rhamnolipids from Burkholderia glumae in Pseudomonas putida—a step forward to tailor-made rhamnolipids

Andreas Wittgens; Beatrix Santiago-Schuebel; Marius Henkel; Till Tiso; Lars M. Blank; Rudolf Hausmann; Diana Hofmann; Susanne Wilhelm; Karl-Erich Jaeger; Frank Rosenau

Rhamnolipids are biosurfactants consisting of rhamnose (Rha) molecules linked through a β-glycosidic bond to 3-hydroxyfatty acids with various chain lengths, and they have an enormous potential for various industrial applications. The best known native rhamnolipid producer is the human pathogen Pseudomonas aeruginosa, which produces short-chain rhamnolipids mainly consisting of a Rha-Rha-C10-C10 congener. Bacteria from the genus Burkholderia are also able to produce rhamnolipids, which are characterized by their long-chain 3-hydroxyfatty acids with a predominant Rha-Rha-C14-C14 congener. These long-chain rhamnolipids offer different physicochemical properties compared to their counterparts from P. aeruginosa making them very interesting to establish novel potential applications. However, widespread applications of rhamnolipids are still hampered by the pathogenicity of producer strains and—even more important—by the complexity of regulatory networks controlling rhamnolipid production, e.g., the so-called quorum sensing system. To overcome encountered challenges of the wild type, the responsible genes for rhamnolipid biosynthesis in Burkholderia glumae were heterologously expressed in the non-pathogenic Pseudomonas putida KT2440. Our results show that long-chain rhamnolipids from Burkholderia spec. can be produced in P. putida. Surprisingly, the heterologous expression of the genes rhlA and rhlB encoding an acyl- and a rhamnosyltransferase, respectively, resulted in the synthesis of two different mono-rhamnolipid species containing one or two 3-hydroxyfatty acid chains in equal amounts. Furthermore, mixed biosynthetic rhlAB operons with combined genes from different organisms were created to determine whether RhlA or RhlB is responsible to define the fatty acid chain lengths in rhamnolipids.


Microbial Cell Factories | 2017

Designer rhamnolipids by reduction of congener diversity: production and characterization

Till Tiso; Rabea Zauter; Hannah Tulke; Bernd Leuchtle; Wing-Jin Li; Beate Behrens; Andreas Wittgens; Frank Rosenau; Heiko Hayen; Lars M. Blank

BackgroundRhamnolipids are biosurfactants featuring surface-active properties that render them suitable for a broad range of industrial applications. These properties include their emulsification and foaming capacity, critical micelle concentration, and ability to lower surface tension. Further, aspects like biocompatibility and environmental friendliness are becoming increasingly important. Rhamnolipids are mainly produced by pathogenic bacteria like Pseudomonas aeruginosa. We previously designed and constructed a recombinant Pseudomonas putida KT2440, which synthesizes rhamnolipids by decoupling production from host-intrinsic regulations and cell growth.ResultsHere, the molecular structure of the rhamnolipids, i.e., different congeners produced by engineered P. putida are reported. Natural rhamnolipid producers can synthesize mono- and di-rhamnolipids, containing one or two rhamnose molecules, respectively. Of each type of rhamnolipid four main congeners are produced, deviating in the chain lengths of the β-hydroxy-fatty acids. The resulting eight main rhamnolipid congeners with variable numbers of hydrophobic/hydrophilic residues and their mixtures feature different physico-chemical properties that might lead to diverse applications. We engineered a microbial cell factory to specifically produce three different biosurfactant mixtures: a mixture of di- and mono-rhamnolipids, mono-rhamnolipids only, and hydroxyalkanoyloxy alkanoates, the precursors of rhamnolipid synthesis, consisting only of β-hydroxy-fatty acids. To support the possibility of second generation biosurfactant production with our engineered microbial cell factory, we demonstrate rhamnolipid production from sustainable carbon sources, including glycerol and xylose. A simple purification procedure resulted in biosurfactants with purities of up to 90%. Finally, through determination of properties specific for surface active compounds, we were able to show that the different mixtures indeed feature different physico-chemical characteristics.ConclusionsThe approach demonstrated here is a first step towards the production of designer biosurfactants, tailor-made for specific applications by purposely adjusting the congener composition of the mixtures. Not only were we able to genetically engineer our cell factory to produce specific biosurfactant mixtures, but we also showed that the products are suited for different applications. These designer biosurfactants can be produced as part of a biorefinery from second generation carbon sources such as xylose.


Gcb Bioenergy | 2018

One-step bioconversion of hemicellulose polymers to rhamnolipids with Cellvibrio japonicus: A proof-of-concept for a potential host strain in future bioeconomy

Felix Horlamus; Andreas Wittgens; Philipp Noll; Jan Michler; Inga Müller; Fabiola Weggenmann; Claudia Oellig; Frank Rosenau; Marius Henkel; Rudolf Hausmann

The purpose of this study was to evaluate Cellvibrio japonicus as a potential host strain for one‐step bioconversion of hemicellulose polymers to value‐added products. C. japonicus could be cultivated on all main lignocellulose monosaccharides as well as xylan polymers as a sole carbon source. This is particularly interesting as most industrially relevant bacteria are neither able to depolymerize wood polymers nor metabolize most hemicellulose monosaccharides. As a result, lignocellulose raw materials typically have to be degraded employing additional processes while the complete conversion of all lignocellulose sugars remains a challenge. Exemplary for a value‐added product, a one‐step conversion of xylan polymers to mono‐rhamnolipid biosurfactants with C. japonicus after transformation with the plasmid pSynPro8oT carrying the genes rhlAB was demonstrated. As achieved product yields in this one‐step bioconversion process are comparably low, many challenges remain to be overcome for application on an industrial scale. Nonetheless, this study provides a first step in the search for establishing a future host strain for bioeconomy, which will ideally be used for bioconversion of lignocellulose polymers with as little exhaustive pretreatment as possible.


Applied Microbiology and Biotechnology | 2018

On the road towards tailor-made rhamnolipids: current state and perspectives

Andreas Wittgens; Frank Rosenau

Rhamnolipids are biosurfactants with an enormous potential to replace or complement classic surfactants in industrial applications. They consist of one or two L-rhamnose residues linked to one or two 3-hydroxyfatty acids of various chain lengths, which can also contain unsaturated carbon-carbon bonds, yielding a wide variety of different structures each with its specific physicochemical properties. Since different applications of surfactants require specific tenside characteristics related to surface tension reduction, emulsification, and foaming etc., rhamnolipids represent a platform molecule which harbors an enormous potential to adopt tailor-made properties to meet a huge variety of demands of surfactants for food-, healthcare-, and biotechnological applications. We are here giving an overview on current technology to synthesize tailor-made rhamnolipids based on the biotechnological use of different enzymes responsible for rhamnolipid biosynthesis originating from different naturally rhamnolipid-producing microorganism. Furthermore, we present future strategies to determine the number of L-rhamnose and 3-hydroxyfatty acids as well as their specific chain lengths and unsaturations to produce customized rhamnolipids perfectly tuned for every application.


AMB Express | 2016

High titer heterologous rhamnolipid production

Janina Beuker; Theresa Barth; Anke Steier; Andreas Wittgens; Frank Rosenau; Marius Henkel; Rudolf Hausmann


Archive | 2012

Means and methods for rhamnolipid production

Lars Blank; Frank Rosenau; Susanne Wilhelm; Andreas Wittgens; Till Tiso

Collaboration


Dive into the Andreas Wittgens's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Till Tiso

RWTH Aachen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susanne Wilhelm

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar

Anke Steier

University of Hohenheim

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christoph Syldatk

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Diana Hofmann

Forschungszentrum Jülich

View shared research outputs
Researchain Logo
Decentralizing Knowledge