Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andreas Wodarz is active.

Publication


Featured researches published by Andreas Wodarz.


Cell | 1995

Expression of crumbs confers apical character on plasma membrane domains of ectodermal epithelia of drosophila

Andreas Wodarz; Uwe Hinz; Martin Engelbert; Elisabeth Knust

The crumbs protein of Drosophila is an integral membrane protein, with 30 EGF-like and 4 laminin A G domain-like repeats in its extracellular segment, which is expressed on the apical plasma membrane of all ectodermally derived epithelia. Here, we present evidence to show that the insertion of crumbs into the plasma membrane is necessary and sufficient to confer apical character on a membrane domain. Overexpression of crumbs results in an enormous expansion of the apical plasma membrane and the concomitant reduction of the basolateral domain. This is followed by the redistribution of beta Heavy-spectrin, a component of the membrane cytoskeleton, and by the ectopic deposition of cuticle and other apical components into these areas. Strikingly, overexpression of the membrane-bound cytoplasmic portion of crumbs alone is sufficient to produce this dominant phenotype. Our results suggest that crumbs plays a key role in specifying the apical plasma membrane domain of ectodermal epithelial cells of Drosophila.


Nature | 1999

Bazooka provides an apical cue for Inscuteable localization in Drosophila neuroblasts

Andreas Wodarz; Andreas Ramrath; Ute Kuchinke; Elisabeth Knust

Asymmetric cell division generates daughter cells with different developmental fates from progenitor cells that contain localized determinants. During this division, the asymmetric localization of cell-fate determinants and the orientation of the mitotic spindle must be precisely coordinated. In Drosophila neuroblasts, inscuteable controls both spindle orientation and the asymmetric localization of the cell-fate determinants Prospero and Numb. Inscuteable itself is localized in an apical cortical crescent and thus reflects the intrinsic asymmetry of the neuroblast. Here we show that localization of Inscuteable depends on Bazooka, a protein containing three PDZ domains with overall sequence similarity to Par-3 of Caenorhabditis elegans. Bazooka and Inscuteable form a complex that also contains Staufen, a protein responsible for the asymmetric localization of prospero messenger RNA. We propose that, after delamination of the neuroblast from the neuroepithelium, Bazooka provides an asymmetric cue in the apical cytocortex that is required to anchor Inscuteable. As Bazooka is also responsible for the maintenance of apical–basal polarity in epithelial tissues, it may be the missing link between epithelial polarity and neuroblast polarity.


Nature Cell Biology | 2007

Cell polarity in development and cancer

Andreas Wodarz; Inke S. Näthke

The development of cancer is a multistep process in which the DNA of a single cell accumulates mutations in genes that control essential cellular processes. Loss of cell–cell adhesion and cell polarity is commonly observed in advanced tumours and correlates well with their invasion into adjacent tissues and the formation of metastases. Growing evidence indicates that loss of cell–cell adhesion and cell polarity may also be important in early stages of cancer. The strongest hints in this direction come from studies on tumour suppressor genes in the fruitfly Drosophila melanogaster, which have revealed their importance in the control of apical–basal cell polarity.


The EMBO Journal | 1997

Casein kinase 2 associates with and phosphorylates Dishevelled

Karl Willert; Marcel F. Brink; Andreas Wodarz; Harold E. Varmus; Roel Nusse

The dishevelled (dsh) gene of Drosophila melanogaster encodes a phosphoprotein whose phosphorylation state is elevated by Wingless stimulation, suggesting that the phosphorylation of Dsh and the kinase(s) responsible for this phosphorylation are integral parts of the Wg signaling pathway. We found that immunoprecipitated Dsh protein from embryos and from cells in tissue culture is associated with a kinase activity that phosphorylates Dsh in vitro. Purification and peptide sequencing of a 38 kDa protein co‐purifying with this kinase activity showed it to be identical to Drosophila Casein Kinase 2 (CK2). Tryptic phosphopeptide mapping indicates that identical peptides are phosphorylated by CK2 in vitro and in vivo, suggesting that CK2 is at least one of the kinases that phosphorylates Dsh. Overexpression of Dfz2, a Wingless receptor, also stimulated phosphorylation of Dsh, Dsh‐associated kinase activity, and association of CK2 with Dsh, thus suggesting a role for CK2 in the transduction of the Wg signal.


Nature Cell Biology | 2002

Establishing cell polarity in development

Andreas Wodarz

Polarity is a common feature of many different cell types, including the Caenorhabditis elegans zygote, the Drosophila oocyte and mammalian epithelial cells. The initial establishment of cell polarity depends on asymmetric cues that lead to reorganization of the cytoskeleton and polarized localization of several cortical proteins that act downstream of the polarization cues. The past year revealed that homologs of the C. elegans par (partitioning defective) genes are also essential for establishing polarity in Drosophila and vertebrate cells. There is growing evidence that the proteins encoded by these genes interact with key regulators of both the actin and the microtubule cytoskeletons.


Development | 2005

Direct association of Bazooka/PAR-3 with the lipid phosphatase PTEN reveals a link between the PAR/aPKC complex and phosphoinositide signaling

Walter von Stein; Andreas Ramrath; Alexandra Grimm; Marion Müller-Borg; Andreas Wodarz

Cell polarity in Drosophila epithelia, oocytes and neuroblasts is controlled by the evolutionarily conserved PAR/aPKC complex, which consists of the serine-threonine protein kinase aPKC and the PDZ-domain proteins Bazooka (Baz) and PAR-6. The PAR/aPKC complex is required for the separation of apical and basolateral plasma membrane domains, for the asymmetric localization of cell fate determinants and for the proper orientation of the mitotic spindle. How the complex exerts these different functions is not known. We show that the lipid phosphatase PTEN directly binds to Baz in vitro and in vivo, and colocalizes with Baz in the apical cortex of epithelia and neuroblasts. PTEN is an important regulator of phosphoinositide turnover that antagonizes the activity of PI3-kinase. We show that Pten mutant ovaries and embryos lacking maternal and zygotic Pten function display phenotypes consistent with a function for PTEN in the organization of the actin cytoskeleton. In freshly laid eggs, the germ plasm determinants oskar mRNA and Vasa are not localized properly to the posterior cytocortex and pole cells do not form. In addition, the actin-dependent posterior movement of nuclei during early cleavage divisions does not occur and the synchrony of nuclear divisions at syncytial blastoderm stages is lost. Pten mutant embryos also show severe defects during cellularization. Our data provide evidence for a link between the PAR/aPKC complex, the actin cytoskeleton and PI3-kinase signaling mediated by PTEN.


Current Biology | 2010

Membrane targeting of Bazooka/PAR-3 is mediated by direct binding to phosphoinositide lipids.

Michael P. Krahn; Dieter R. Klopfenstein; Nannette Fischer; Andreas Wodarz

Cell polarity in higher animals is controlled by evolutionarily conserved protein complexes, which localize to the cytocortex in a polarized manner. The PAR-3/PAR-6/atypical protein kinase C (aPKC) complex is the first to become asymmetrically localized, and it controls the localization of additional complexes functioning further downstream in the regulation of cell polarity. The first component of the PAR-3/PAR-6/aPKC complex that is localized to the cortex is Bazooka/PAR-3 (Baz), a large scaffolding protein. In most cell types analyzed, loss of Baz function leads to loss of cell polarity. Here we present a structure-function analysis of Baz focusing on its subcellular localization and function in four different polarized Drosophila cell types: the embryonic ectodermal epidermis, the follicular epithelium, embryonic neuroblasts, and the oocyte. We show that the PDZ domains of Baz are dispensable for its correct localization, whereas a conserved region in the C-terminal part of Baz to which no function had been assigned so far is required and sufficient for membrane localization. This region binds to phosphoinositide membrane lipids and thus mediates cortical localization of Baz by direct interaction with the plasma membrane. Our findings reveal a mechanism for the coupling of plasma membrane polarity and cortical polarity.


Development | 2006

Perlecan and Dystroglycan act at the basal side of the Drosophila follicular epithelium to maintain epithelial organization

Martina Schneider; Ashraf A. Khalil; John S. Poulton; Casimiro Castillejo-López; Diane Egger-Adam; Andreas Wodarz; Wu-Min Deng; Stefan Baumgartner

Dystroglycan (Dg) is a widely expressed extracellular matrix (ECM) receptor required for muscle viability, synaptogenesis, basementmembrane formation and epithelial development. As an integral component of the Dystrophin-associated glycoprotein complex, Dg plays a central role in linking the ECM and the cytoskeleton. Disruption of this linkage in skeletal muscle leads to various types of muscular dystrophies. In epithelial cells, reduced expression of Dg is associated with increased invasiveness of cancer cells. We have previously shown that Dg is required for epithelial cell polarity in Drosophila, but the mechanisms of this polarizing activity and upstream/downstream components are largely unknown. Using the Drosophila follicle-cell epithelium (FCE) as a model system, we show that the ECM molecule Perlecan (Pcan) is required for maintenance of epithelial-cell polarity. Follicle cells that lack Pcan develop polarity defects similar to those of Dg mutant cells. Furthermore, Dg depends on Pcan but not on Laminin A for its localization in the basal-cell membrane, and the two proteins bind in vitro. Interestingly, the Dg form that interacts with Pcan in the FCE lacks the mucin-like domain, which is thought to be essential for Dg ligand binding activity. Finally, we describe two examples of how Dg promotes the differentiation of the basal membrane domain: (1) by recruiting/anchoring the cytoplasmic protein Dystrophin; and (2) by excluding the transmembrane protein Neurexin. We suggest that the interaction of Pcan and Dg at the basal side of the epithelium promotes basal membrane differentiation and is required for maintenance of cell polarity in the FCE.


Current Biology | 2000

Tumor suppressors: Linking cell polarity and growth control

Andreas Wodarz

The Drosophila tumor suppressor genes scribble, discs large and lethal giant larvae appear to act in a common pathway. Mutations in any of these genes lead to loss of apical-basal cell polarity and overproliferation of epithelia, revealing a close connection between cytoarchitecture and growth control.


Mechanisms of Development | 1993

CRUMBS is involved in the control of apical protein targeting during Drosophila epithelial development

Andreas Wodarz; Ferdi Grawe; Elisabeth Knust

The gene crumbs (crb) of Drosophila encodes a transmembrane protein with 30 EGF-like and four laminin A G-domain-like repeats in its extracellular domain. Loss-of-function mutations lead to severe disorganization and degeneration of ectodermally derived embryonic epithelia. In embryos homozygous for crb8F105, an amorphic allele, the CRUMBS protein is diffusely distributed in the cytoplasm instead of being apically localized as in wild-type; this mislocation occurs before any morphologically detectable cellular phenotype becomes manifest, suggesting that apical targeting of proteins is affected in crb mutant embryos. This has been confirmed by using an antibody directed against YELLOW, another apically expressed protein. A single base exchange in crb8F105 leads to the introduction of a premature stop codon, thus eliminating the C-terminal part of the cytoplasmic domain. A possible role for crb in controlling apical-basal polarity is discussed.

Collaboration


Dive into the Andreas Wodarz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andreas Ramrath

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar

Ieva Gailite

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hamze Beati

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge