Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andreea Barbu is active.

Publication


Featured researches published by Andreea Barbu.


Molecular and Cellular Endocrinology | 2002

Cytokine-induced apoptosis and necrosis are preceded by disruption of the mitochondrial membrane potential (Δψm) in pancreatic RINm5F cells: prevention by Bcl-2

Andreea Barbu; Nils Welsh; Johan Saldeen

The mechanisms of cytokine-induced beta-cell death are poorly characterised. In rat insulin-producing RINm5F cells, the combination of interleukin-1beta, interferon-gamma and tumour necrosis factor-alpha presently induced disruption of the mitochondrial membrane potential (Deltapsi(m)) as demonstrated by reduced JC-1 fluorescence. The reduction of Deltapsi(m) was maximal after 8 h and was preceded by increased formation of reactive oxygen species (ROS), as assessed by dichlorofluorescein-diacetate (DCFH-DA) fluorescence. A nitric oxide synthase-, but not a ROS-inhibitor, prevented cytokine-induced loss of Deltapsi(m). Overexpression of the anti-apoptotic protein Bcl-2 increased both JC-1 and DCFH-DA fluorescence, which was paralleled by protection against cytokine-induced apoptosis and necrosis. It is concluded that cytokines induce a nitric oxide-dependent disruption of Deltapsi(m) and that this may be a necessary event for both beta-cell apoptosis and necrosis. Bcl-2 may prevent beta-cell death by counteracting mitochondrial permeability transition.


Molecular Immunology | 2015

The role of complement factor C3 in lipid metabolism

Andreea Barbu; Osama A. Hamad; Lars Lind; Kristina Nilsson Ekdahl; Bo Nilsson

Abundant reports have shown that there is a strong relationship between C3 and C3a-desArg levels, adipose tissue, and risk factors for cardiovascular disease, metabolic syndrome and diabetes. The data indicate that complement components, particularly C3, are involved in lipid metabolism. The C3 fragment, C3a-desArg, functions as a hormone that has insulin-like effects and facilitates triglyceride metabolism. Adipose tissue produces and regulates the levels of complement components, which promotes generation of inflammatory initiators such as the anaphylatoxins C3a and C5a. The anaphylatoxins trigger a cyto/chemokine response in proportion to the amount of adipose tissue present, and induce inflammation and mediate metabolic effects such as insulin resistance. These observations support the concept that complement is an important participant in lipid metabolism and in obesity, contributing to the metabolic syndrome and to the low-grade inflammation associated with obesity.


Upsala Journal of Medical Sciences | 2000

Novel experimental strategies to prevent the development of type 1 diabetes mellitus.

Stellan Sandler; Annika K. Andersson; Andreea Barbu; Claes Hellerström; Maria Holstad; Ella Karlsson; Jan-Olov Sandberg; Eva Strandell; Johan Saldeen; Johnny Sternesjö; Linda Tillmar; Decio L. Eizirik; Malin Flodström; Nils Welsh

Abstract Type 1 diabetes is an autoimmune disease leading to extensive destruction of the pancreatic β-cells. Our research focusses on the role of β-cells during the course of the disease, aiming at finding novel strategies to enhance β-cell resistance against the cytotoxic damage inflicted by the immune system. Special attention has been paid to the possibility that cytokines released by the immune cells infiltrating the pancreatic islets can directly suppress and kill β-cells. Certain cytokines (interleukin-1β, tumor necrosis factor-α and interferon-γ) either alone or in combination, are able to activate signal transduction pathways in β-cells leading to transcription factor activation and de novo gene expression. In this context, it has been found that induction of inducible nitric oxide synthase mediates an elevated production of nitric oxide, which impairs mitochondrial function and causes DNA damage eventually leading to apoptosis and necrosis. However, other induced proteins SUCH AS heat shock protein 70 and superoxide dismutase may reflect a defense reaction elicited in the β-cells by the cytokines. Our strategy is to further seek for proteins involved in both destruction and protection of β-cells. Based on this knowledge, we plan to apply gene therapeutic approaches to increase expression of protective genes in β-cells. If this is feasible we will then evaluate the function and survival of such modified β-cells in animal models of type 1 diabetes such as the NOD mouse. The long-term goal for this research line is to find novel approaches to influence β-cell resistance in humans at risk of developing type 1 diabetes.


American Journal of Physiology-endocrinology and Metabolism | 2009

Overexpression of the nuclear factor-κB subunit c-Rel protects against human islet cell death in vitro.

Dariush Mokhtari; Andreea Barbu; Ilir Mehmeti; Chantal Vercamer; Nils Welsh

The transcription factor nuclear factor (NF)-κB is known to modulate rates of apoptosis and may therefore play a role in the increased β-cell death that occurs in type 1 and type 2 diabetes. The aim of the present investigation was to study the expression of NF-κB subunits in human islet cells and whether overexpression of the NF-κB subunit c-Rel affects islet cell survival. We detected expression of p65, Rel-B, p50, p105, p52, and the ribosomal protein S3 (rpS3) in human islet cells. Among these, only p65 and rpS3 were translocated from the cytosolic to the nuclear fraction in response to cytokines. Interestingly, rpS3 participated in p65 binding to the κB-element in gel shift analysis experiments. We observed cytoplasmic c-Rel expression in vivo in 6J mice, and signs of nuclear translocation in β-cells of infiltrated nonobese diabetic islets. Human islet cells were also dispersed by trypsin treatment and transduced with a c-Rel adenoviral vector. This resulted in increased expression of c-Rel and inhibitory factor κB, increased κB-binding activity, and augmented protein levels of Bcl-X(L,) c-IAP2, and heat shock protein 72. c-Rel expression in human islet cells protected against cytokine-induced caspase 3 activation and cell death. c-Rel protected also against streptozotocin- and H(2)O(2)-induced cell death, in both intact rat islets and human islet cells. We conclude that rpS3 participates in NF-κB signaling and that a genetic increase in the activity of the NF-κB subunit c-Rel results in protection against cell death in human islets.


Upsala Journal of Medical Sciences | 2016

Pancreatic islet blood flow and its measurement

Leif Jansson; Andreea Barbu; Birgitta Bodin; Carl Johan Drott; Daniel Espes; Xiang Gao; Liza Grapensparr; Örjan Källskog; Joey Börjesson Lau; Hanna Liljebäck; Fredrik Palm; My Quach; Monica Sandberg; Victoria Strömberg; Sara Ullsten; Per-Ola Carlsson

Abstract Pancreatic islets are richly vascularized, and islet blood vessels are uniquely adapted to maintain and support the internal milieu of the islets favoring normal endocrine function. Islet blood flow is normally very high compared with that to the exocrine pancreas and is autonomously regulated through complex interactions between the nervous system, metabolites from insulin secreting β-cells, endothelium-derived mediators, and hormones. The islet blood flow is normally coupled to the needs for insulin release and is usually disturbed during glucose intolerance and overt diabetes. The present review provides a brief background on islet vascular function and especially focuses on available techniques to measure islet blood perfusion. The gold standard for islet blood flow measurements in experimental animals is the microsphere technique, and its advantages and disadvantages will be discussed. In humans there are still no methods to measure islet blood flow selectively, but new developments in radiological techniques hold great hopes for the future.


Diabetologia | 2006

A perfusion protocol for highly efficient transduction of intact pancreatic islets of Langerhans.

Andreea Barbu; Birgitta Bodin; Michael Welsh; Leif Jansson; Nils Welsh

Aims/hypothesisSuccessful gene transfer to pancreatic islets might be a powerful tool for dissecting the biological pathways involved in the functional impairment and destruction of beta cells in type 1 diabetes. In the long run, such an approach may also prove useful for promoting islet graft survival after transplantation in diabetic patients. However, efficient genetic modification of primary insulin-producing cells is limited by the specific compact structure of the pancreatic islet. We present here a whole-pancreas perfusion-based transduction procedure for genetic modification of intact pancreatic islets.Materials and methodsWe used flow cytometry analysis and confocal microscopy to evaluate the efficiency of in vitro and perfusion-based transduction protocols that use adenoviral and lentiviral vectors expressing green fluorescent protein. Islet cell viability was assessed by fluorescence microscopy and beta cell function was determined via glucose-stimulated insulin secretion.ResultsIn intact rat and human pancreatic islets, adenoviral and lentiviral vectors mediated gene transfer to about 30% of cells, but they did not reach the inner cellular mass within the islet core. Using the whole-pancreas perfusion protocol, we demonstrate that at least in rodent models the centrally located insulin-producing cells can be transduced with high efficiency, while preserving the structural integrity of the islet. Moreover, islet cell viability and function are not impaired by this procedure.Conclusions/interpretationThese results support the view that perfusion-based transduction protocols may significantly improve the yield of successfully engineered primary insulin-producing cells for diabetes research.


Molecular and Cellular Endocrinology | 2009

Pref-1 and adipokine expression in adipose tissues of GK and Zucker rats

Andreea Barbu; Gabriella Persdotter Hedlund; Jenny Lind; Carina Carlsson

In view of the central role of preadipocyte factor-1, adiponectin and leptin in white adipose tissue function, the aim of the present study was to analyze the mRNA expression of these proteins and of the inflammatory markers interleukin-6 and tumor necrosis factor-alpha in visceral and subcutaneous fat pads of rats with different metabolic disorders. We demonstrated highly divergent expression of preadipocyte factor-1, upregulated expression of adiponectin, interleukin-6 and TNF-alpha mRNA in adipose tissues of the diabetic Goto Kakizaki rat compared to the obese Zucker rat. This was correlated to an increased number of large adipocytes and serum levels of adiponectin. Furthermore, in all four strains studied (as above plus Wistar Furth and Zucker Lean), significant heterogeneity was evident in adipokine expression within specific adipose tissues previously defined as belonging to the visceral or subcutaneous fat depots. These results suggest that significantly increased levels of inflammation and redistribution of adipocyte size are mechanisms contributing to the development of type 2 diabetes in the GK rat.


American Journal of Pathology | 2013

Multiple Microvascular Alterations in Pancreatic Islets and Neuroendocrine Tumors of a Men1 Mouse Model

Xia Chu; Xiang Gao; Leif Jansson; My Quach; Britt Skogseid; Andreea Barbu

Vascular therapeutic targeting requires thorough evaluation of the mechanisms activated in the specific context of each particular tumor type. We highlight structural, molecular, and functional microvascular aberrations contributing to development and maintenance of pancreatic neuroendocrine tumors (NETs), with special reference to multiple endocrine neoplasia 1 (MEN1) syndrome, using a Men1 mouse model. Tissue samples were analyzed by immunofluorescence to detect vessel density and pericyte distribution within the endocrine pancreas; expression of angiogenic factors was assessed by immunohistochemistry and quantitative real-time PCR in isolated islets and adenomas cultured under normoxic or hypoxic conditions. The increased vascular density of pancreatic NETs developed in Men1 mice was paralleled by an early and extensive redistribution of pericytes within endocrine tissue. These morphological alterations are supported by, and in some cases preceded by, fine-tuned variations in expression of several angiogenic regulators and are further potentiated by hypoxia. By combining two novel ex vivo and in vivo single-islet and tumor perfusion techniques, we demonstrated that both vascular reactivity and blood perfusion of tumor arterioles are significantly altered in response to glucose and L-nitro-arginine methyl ester. Our findings unravel multiple potential molecular and physiological targets differentially activated in the endocrine pancreas of Men1 mice and highlight the need for in-depth functional studies to fully understand the contribution of each component to development of pancreatic NETs in MEN1 syndrome.


Acta Biomaterialia | 2016

Heparinization of cell surfaces with short peptide-conjugated PEG-lipid regulates thromboinflammation in transplantation of human MSCs and hepatocytes

Sana Asif; Kristina Nilsson Ekdahl; Karin Fromell; Elisabet Gustafson; Andreea Barbu; Katarina Le Blanc; Bo Nilsson; Yuji Teramura

UNLABELLED Infusion of therapeutic cells into humans is associated with immune responses, including thromboinflammation, which result in a large loss of transplanted cells. To address these problems, heparinization of the cell surfaces was achieved by a cell-surface modification technique using polyethylene glycol-conjugated phospholipid (PEG-lipid) derivatives. A short heparin-binding peptide was conjugated to the PEG-lipid for immobilization of heparin conjugates on the surface of human mesenchymal stem cells (hMSCs) and human hepatocytes. Here three kinds of heparin-binding peptides were used for immobilizing heparin conjugates and examined for the antithrombogenic effects on the cell surface. The heparinized cells were incubated in human whole blood to evaluate their hemocompatibility by measuring blood parameters such as platelet count, coagulation markers, complement markers, and Factor Xa activity. We found that one of the heparin-binding peptides did not show cytotoxicity after the immobilization with heparin conjugates. The degree of binding of the heparin conjugates on the cell surface (analyzed by flow cytometer) depended on the ratio of the active peptide to control peptide. For both human MSCs and hepatocytes in whole-blood experiments, no platelet aggregation was seen in the heparin conjugate-immobilized cell group vs. the controls (non-coated cells or control peptide). Also, the levels of thrombin-antithrombin complex (TAT), C3a, and sC5b-9 were significantly lower than those of the controls, indicating a lower activation of coagulation and complement. Factor Xa analysis indicated that the heparin conjugate was still active on the cell surface at 24h post-coating. It is possible to immobilize heparin conjugates onto hMSC and human hepatocyte surfaces and thereby protect the cell surfaces from damaging thromboinflammation. STATEMENT OF SIGNIGFICANCE We present a promising approach to enhance the biocompatibility of therapeutic cells. Here we used short peptide-conjugated PEG-lipid for cell surface modification and heparin conjugates for the coating of human hepatocytes and MSCs. We screened the short peptides to find higher affinity for heparinization of cell surface and performed hemocompatibility assay of heparinized human hepatocytes and human MSCs in human whole blood. Using heparin-binding peptide with higher affinity, not only coagulation activation but also complement activation was significantly suppressed. Thus, it was possible to protect human hepatocytes and human MSCs from the attack of thromboinflammatory activation, which can contribute to the improvement graft survival.


Upsala Journal of Medical Sciences | 2015

Activated pancreatic stellate cells can impair pancreatic islet function in mice

Guangxiang Zang; Monica Sandberg; Per-Ola Carlsson; Nils Welsh; Leif Jansson; Andreea Barbu

Abstract Background. Pancreatic or islet fibrosis is often associated with activated pancreatic stellate cells (PSCs). PSCs are considered not only to promote fibrosis, but also to be associated with glucose intolerance in some diseases. We therefore evaluated morphological and functional relationships between islets and PSCs in the normal mouse pancreas and transplanted islets. Methods. Immunohistochemistry was used to map the presence of PSCs in the normal mouse pancreas and islets implanted under the renal capsule. We isolated and cultured mouse PSCs and characterized them morphologically by immunofluorescence staining. Furthermore, we measured their cytokine production and determined their effects on insulin release from simultaneously cultured islets. Results. PSCs were scattered throughout the pancreas, with occasional cells within the islets, particularly in the islet capsule. In islet transplants they were found mainly in the graft periphery. Cultured PSCs became functionally activated and produced several cytokines. Throughout the culture period they linearly increased their production of interleukin-6 and mammalian keratinocyte-derived chemokine. PSC cytokine production was not affected by acute hyperglycemia. Syngeneic islets co-cultured with PSCs for 24–48 h increased their insulin release and lowered their insulin content. However, short-term insulin release in batch-type incubations was unaffected after 48 h of co-culture. Increased islet cell caspase-3 activation and a decreased islet cell replication were consistently observed after co-culture for 2 or 7 days. Conclusion. Activated PSCs may contribute to impaired islet endocrine function seen in exocrine pancreatitis and in islet fibrosis associated with some cases of type 2 diabetes.

Collaboration


Dive into the Andreea Barbu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Britt Skogseid

Uppsala University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge