Andrei K. Dioumaev
University of California, Irvine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrei K. Dioumaev.
Biochemistry | 2001
Andrei K. Dioumaev
This review deals with the role of carboxylic amino acids in the proton-transport activity of bacteriorhodopsin. The main focus is on the infrared data, which allow direct monitoring of the protonation/deprotonation of specific residues during the proton movement in the course of the photocycle. Additional attention is paid to the potential use of carboxylic acids in proteins as internal sensors, based on the sensitivity of their IR frequencies to the immediate environment.
Biophysical Chemistry | 1997
Andrei K. Dioumaev
This communication is devoted to the evaluation of true spectra and intrinsic (microscopic) rate constants from apparent kinetics measured in time-resolved spectroscopic experiments monitoring complex relaxation dynamics of multi-intermediate systems. Retinal proteins, cytochrom c oxidase, phytochrome, hemoglobin, and photoactive yellow protein are examples of natural systems in which several transient states (intermediates) overlap so strongly, both in time and spectral domains, that their isolation and full characterization by classical biochemical methods is impossible, and mathematical evaluation of their true spectra and microscopic kinetic constants is required. Most of the popular methods for analysis of kinetic data, global fitting (GF), singular value decomposition (SVD), principal component analysis (PCA) and factor analysis (FA), are applicable to two-dimensional (2D, in time and spectral domains) arrays of data. All these methods produce only a phenomenological description of data, that approximates the measured data only with apparent kinetics. A fundamental limitation, namely, insufficient information in 2D data, does not allow any of these methods to reach the final goal: to recalculate from apparent to intrinsic values in any but the most trivial cases. A strategy was proposed (J.F. Nagle, Biophys. J.. 59 (1991) 476-487) to include an additional (third) information-rich dimension, temperature, into the simultaneous computer analysis. A simultaneous direct fitting of 3D data arrays to systems of differential rate equations allows recalculation of apparent kinetics into true spectra and intrinsic rate constants. In spite of its evident theoretical advantages, this strategy has not been successful on real data. Here we describe another custom-built program, SCHEMEFIT, developed for the same purpose: to fit measured kinetics directly to the system of coupled differential rate equations describing the photochromes relaxation dynamics. Though sharing the main strategy with the previous approach, SCHEMEFIT is based on a different set of numeric algorithms, and its application requires different tactics. Its performance is illustrated on synthetic data, and compared with GF and SVD. An example of applying SCHEMEFIT to the photocycle of halorhodopsin is also reported.
Biophysical Journal | 1998
Leonid S. Brown; Andrei K. Dioumaev; Richard Needleman; Janos K. Lanyi
In the recently proposed local-access model for proton transfers in the bacteriorhodopsin transport cycle (Brown et al. 1998. Biochemistry. 37:3982-3993), connection between the retinal Schiff base and Asp85 (in the extracellular direction) and Asp96 (in the cytoplasmic direction)is maintained as long as the retinal is in its photoisomerized state. The directionality of the proton translocation is determined by influences in the protein that make Asp85 a proton acceptor and, subsequently, Asp96 a proton donor. The idea of concurrent local access of the Schiff base in the two directions is now put to a test in the photocycle of the D115N/D96N mutant. The kinetics had suggested that there is a single sequence of intermediates, L<-->M1<-->M2<-->N, and the M2-->M1 reaction depends on whether a proton is released to the extracellular surface. This is now confirmed. We find that at pH 5, where proton release does not occur, but not at higher pH, the photostationary state created by illumination with yellow light contains not only the M1 and M2 states, but also the L and the N intermediates. Because the L and M1 states decay rapidly, they can be present only if they are in equilibrium with later intermediates of the photocycle. Perturbation of this mixture with a blue flash caused depletion of the M intermediate, followed by its partial recovery at the expense of the L state. The change in the amplitude of the C=O stretch band at 1759 cm-1 demonstrated protonation of Asp85 in this process. Thus, during the reequilibration the Schiff base lost its proton to Asp85. Because the N state, also present in the mixture, arises by protonation of the Schiff base from the cytoplasmic surface, these results fulfill the expectation that under the conditions tested the extracellular access of the Schiff base would not be lost at the time when there is access in the cytoplasmic direction. Instead, the connectivity of the Schiff base flickers rapidly (with the time constant of the M1<-->M2 equilibration) between the two directions during the entire L-to-N segment of the photocycle.
Biochemistry | 2014
Sergei P. Balashov; Eleonora S. Imasheva; Andrei K. Dioumaev; Jennifer M. Wang; Kwang Hwan Jung; Janos K. Lanyi
A group of microbial retinal proteins most closely related to the proton pump xanthorhodopsin has a novel sequence motif and a novel function. Instead of, or in addition to, proton transport, they perform light-driven sodium ion transport, as reported for one representative of this group (KR2) from Krokinobacter. In this paper, we examine a similar protein, GLR from Gillisia limnaea, expressed in Escherichia coli, which shares some properties with KR2 but transports only Na+. The absorption spectrum of GLR is insensitive to Na+ at concentrations of ≤3 M. However, very low concentrations of Na+ cause profound differences in the decay and rise time of photocycle intermediates, consistent with a switch from a “Na+-independent” to a “Na+-dependent” photocycle (or photocycle branch) at ∼60 μM Na+. The rates of photocycle steps in the latter, but not the former, are linearly dependent on Na+ concentration. This suggests that a high-affinity Na+ binding site is created transiently after photoexcitation, and entry of Na+ from the bulk to this site redirects the course of events in the remainder of the cycle. A greater concentration of Na+ is needed for switching the reaction path at lower pH. The data suggest therefore competition between H+ and Na+ to determine the two alternative pathways. The idea that a Na+ binding site can be created at the Schiff base counterion is supported by the finding that upon perturbation of this region in the D251E mutant, Na+ binds without photoexcitation. Binding of Na+ to the mutant shifts the chromophore maximum to the red like that of H+, which occurs in the photocycle of the wild type.
Biochemistry | 2012
Sergei P. Balashov; L. E. Petrovskaya; E. P. Lukashev; Eleonora S. Imasheva; Andrei K. Dioumaev; Jennifer M. Wang; Sergey V. Sychev; D. A. Dolgikh; A. B. Rubin; M. P. Kirpichnikov; Janos K. Lanyi
One of the distinctive features of eubacterial retinal-based proton pumps, proteorhodopsins, xanthorhodopsin, and others, is hydrogen bonding of the key aspartate residue, the counterion to the retinal Schiff base, to a histidine. We describe properties of the recently found eubacterium proton pump from Exiguobacterium sibiricum (named ESR) expressed in Escherichia coli, especially features that depend on Asp-His interaction, the protonation state of the key aspartate, Asp85, and its ability to accept a proton from the Schiff base during the photocycle. Proton pumping by liposomes and E. coli cells containing ESR occurs in a broad pH range above pH 4.5. Large light-induced pH changes indicate that ESR is a potent proton pump. Replacement of His57 with methionine or asparagine strongly affects the pH-dependent properties of ESR. In the H57M mutant, a dramatic decrease in the quantum yield of chromophore fluorescence emission and a 45 nm blue shift of the absorption maximum with an increase in the pH from 5 to 8 indicate deprotonation of the counterion with a pK(a) of 6.3, which is also the pK(a) at which the M intermediate is observed in the photocycle of the protein solubilized in detergent [dodecyl maltoside (DDM)]. This is in contrast with the case for the wild-type protein, for which the same experiments show that the major fraction of Asp85 is deprotonated at pH >3 and that it protonates only at low pH, with a pK(a) of 2.3. The M intermediate in the wild-type photocycle accumulates only at high pH, with an apparent pK(a) of 9, via deprotonation of a residue interacting with Asp85, presumably His57. In liposomes reconstituted with ESR, the pK(a) values for M formation and spectral shifts are 2-3 pH units lower than in DDM. The distinctively different pH dependencies of the protonation of Asp85 and the accumulation of the M intermediate in the wild-type protein versus the H57M mutant indicate that there is strong Asp-His interaction, which substantially lowers the pK(a) of Asp85 by stabilizing its deprotonated state.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Andrei K. Dioumaev; Janos K. Lanyi
The time course of thermal reactions after illumination of 100% humidified bacteriorhodopsin films was followed with FTIR spectroscopy between 125 and 195 K. We monitored the conversion of the initial photoproduct, K, to the next, L intermediate, and a shunt reaction of the L state directly back to the initial BR state. Both reactions can be described by either multiexponential kinetics, which would lead to apparent end-state mixtures that contain increasing amounts of the product, i.e., L or BR, with increasing temperature, or distributed kinetics. Conventional kinetic schemes that could account for the partial conversion require reversible reactions, branching, or parallel cycles. These possibilities were tested by producing K or L and monitoring their interconversion at a single temperature and by shifting the temperature upward or downward after an initial incubation and after their redistribution. The results are inconsistent with any conventional scheme. Instead, we attribute the partial conversions to the other alternative, distributed kinetics, observed previously in myoglobin, which arise from an ensemble of frozen conformational substates at the cryogenic temperatures. In this case, the time course of the reactions reflects the progressive depletion of distinct microscopic substates in the order of their increasing activation barriers, with a distribution width for K to L reaction of ≈7 kJ/mol.
Journal of Biological Chemistry | 2013
Sergei P. Balashov; L. E. Petrovskaya; Eleonora S. Imasheva; E. P. Lukashev; Andrei K. Dioumaev; Jennifer M. Wang; Sergey V. Sychev; D. A. Dolgikh; A. B. Rubin; M. P. Kirpichnikov; Janos K. Lanyi
Background: Lysine rather than a carboxylic residue is in place of the internal proton donor in the E. sibiricum proton pump. Results: H+ uptake precedes reprotonation of the retinal Schiff base. K96A mutation slows it by >100-fold. Conclusion: Lysine 96 facilitates proton delivery to the Schiff base. Significance: This is the first example where lysine mediates proton transfer to the retinal Schiff base. A lysine instead of the usual carboxyl group is in place of the internal proton donor to the retinal Schiff base in the light-driven proton pump of Exiguobacterium sibiricum (ESR). The involvement of this lysine in proton transfer is indicated by the finding that its substitution with alanine or other residues slows reprotonation of the Schiff base (decay of the M intermediate) by more than 2 orders of magnitude. In these mutants, the rate constant of the M decay linearly decreases with a decrease in proton concentration, as expected if reprotonation is limited by the uptake of a proton from the bulk. In wild type ESR, M decay is biphasic, and the rate constants are nearly pH-independent between pH 6 and 9. Proton uptake occurs after M formation but before M decay, which is especially evident in D2O and at high pH. Proton uptake is biphasic; the amplitude of the fast phase decreases with a pKa of 8.5 ± 0.3, which reflects the pKa of the donor during proton uptake. Similarly, the fraction of the faster component of M decay decreases and the slower one increases, with a pKa of 8.1 ± 0.2. The data therefore suggest that the reprotonation of the Schiff base in ESR is preceded by transient protonation of an initially unprotonated donor, which is probably the ϵ-amino group of Lys-96 or a water molecule in its vicinity, and it facilitates proton delivery from the bulk to the reaction center of the protein.
Journal of Physical Chemistry B | 2013
Andrei K. Dioumaev; L. E. Petrovskaya; Jennifer M. Wang; Sergei P. Balashov; D. A. Dolgikh; M. P. Kirpichnikov; Janos K. Lanyi
The photocycle of the retinal protein from Exiguobacterium sibiricum, which differs from bacteriorhodopsin in both its primary donor and acceptor, is characterized by visible and infrared spectroscopy. At pH above pKa ~6.5, we find a bacteriorhodopsin-like photocycle, which originates from excitation of the all-trans retinal chromophore with K-, L-, M-, and N-like intermediates. At pH below pKa ~6.5, the M state, which reflects Schiff base deprotonation during proton pumping, is not accumulated. However, using the infrared band at ~1760 cm(-1) as a marker for transient protonation of the primary acceptor, we find that Schiff base deprotonation must have occurred at pH not only above but also below the pKa ~6.5. Thus, the M state is formed but not accumulated for kinetic reasons. Further, chromophore reisomerization from the 13-cis to the all-trans conformation occurs very late in the photocycle. The strongly red-shifted states that dominate the second half of the cycle are produced before the reisomerization step, and by this criterion, they are not O-like but rather N-like states. The assignment of photocycle intermediates enables reevaluation of the photocycle; its specific features are discussed in relation to the general mechanism of proton transport in retinal proteins.
Biochemistry | 2008
Andrei K. Dioumaev; Janos K. Lanyi
Below 195 K, the bacteriorhodopsin photocycle could not be adequately described with exponential kinetics [Dioumaev, A. K., and Lanyi, J. K. (2007) Proc. Natl. Acad. Sci. U.S.A. 104, 9621-9626] but required distributed kinetics, previously found in hemoglobin and myoglobin at temperatures below the vitrification point of the surrounding solvent. The aim of this study is to determine which factors cause the switch from this low-temperature regime to the conventional kinetics observed at ambient temperature. The photocycle was monitored by time-resolved FTIR between 180 and 280 K, using the D96N mutant. Depending on the temperature, decay and temporal redistribution of two or three intermediates (L, M, and N) were observed. Above approximately 245 K, an abrupt change in the kinetic behavior of the photocycle takes place. It does not affect the intermediates present but greatly accelerates their decay. Below approximately 240 K, a kinetic pattern with partial decay that cannot be explained by conventional kinetics, but suggesting distributed kinetics, was dominant, while above approximately 250 K, there were no significant deviations from exponential behavior. The approximately 245 K critical point is >/=10 K below the freezing point of interbilayer water, and we were unable to correlate it with any FTIR-detectable transition of the lipids. Therefore, we attribute the change from distributed to conventional kinetics to a thermodynamic phase transition in the protein. Most probably, it is related to the freezing and thawing of internal fluctuations of the protein, known as the dynamic phase transition, although in bacteriorhodopsin the latter is usually believed to take place at least 15 K below the observed critical temperature of approximately 245 K.
Journal of Physical Chemistry B | 2010
Andrei K. Dioumaev; Jennifer M. Wang; Janos K. Lanyi
Low-temperature FTIR spectroscopy of bacteriorhodopsin and xanthorhodopsin was used to elucidate the number of K-like bathochromic states, their sequence, and their contributions to the photoequilibrium mixtures created by illumination at 80-180 K. We conclude that in bacteriorhodopsin the photocycle includes three distinct K-like states in the sequence bR (hv)--> I* --> J --> K(0) --> K(E) --> L --> ..., and similarly in xanthorhodopsin. K(0) is the main fraction in the mixture at 77 K that is formed from J. K(0) becomes thermally unstable above approximately 50 K in both proteins. At 77 K, both J-to-K(0) and K(0)-to-K(E) transitions occur and, contrarily to long-standing belief, cryogenic trapping at 77 K does not produce a pure K state but a mixture of the two states, K(0) and K(E), with contributions from K(E) of approximately 15 and approximately 10% in the two retinal proteins, respectively. Raising the temperature leads to increasing conversion of K(0) to K(E), and the two states coexist (without contamination from non-K-like states) in the 80-140 K range in bacteriorhodopsin, and in the 80-190 K range in xanthorhodopsin. Temperature perturbation experiments in these regions of coexistence revealed that, in spite of the observation of apparently stable mixtures of K(0) and K(E), the two states are not in thermally controlled equilibrium. The K(0)-to-K(E) transition is unidirectional, and the partial transformation to K(E) is due to distributed kinetics, which governs the photocycle dynamics at temperatures below approximately 245 K (Dioumaev and Lanyi, Biochemistry 2008, 47, 11125-11133). From spectral deconvolution, we conclude that the K(E) state, which is increasingly present at higher temperatures, is the same intermediate that is detected by time-resolved FTIR prior to its decay, on a time scale of hundreds of nanoseconds at ambient temperature (Dioumaev and Braiman, J. Phys. Chem. B 1997, 101, 1655-1662), into the K(L) state. We were unable to trap the latter separately from K(E) at low temperature, due to the slow distributed kinetics and the increasingly faster overlapping formation of the L state. Formation of the two consecutive K-like states in both proteins is accompanied by distortion of two different weakly bound water molecules: one in K(0), the other in K(E). The first, well-documented in bacteriorhodopsin at 77 K where K(0) dominates, was assigned to water 401 in bacteriorhodopsin. The other water molecule, whose participation has not been described previously, is disturbed on the next step of the photocycle, in K(E), in both proteins. In bacteriorhodopsin, the most likely candidate is water 407. However, unlike bacteriorhodopsin, the crystal structure of xanthorhodopsin lacks homologous weakly bound water molecules.