Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrei M. Sarna-Wojcicki is active.

Publication


Featured researches published by Andrei M. Sarna-Wojcicki.


Journal of Geophysical Research | 2000

New 40Ar/39Ar age of the Bishop Tuff from multiple sites and sediment rate calibration for the Matuyama-Brunhes boundary

Andrei M. Sarna-Wojcicki; Malcolm S. Pringle; Jan R. Wijbrans

Precise dating of sanidine from proximal ash flow Bishop Tuff and air fall Bishop pumice and ash, California, can be used to derive an absolute age of the Matuyama Reversed-Brunhes Normal (M-B) paleomagnetic transition, identified stratigraphically close beneath the Bishop Tuff and ash at many sites in the western United States. An average age of 758.9±1.8 ka, standard error of the mean (SEM), was obtained for individual sanidine crystals or groups of several crystals, determined from ∼70 individual analyses of sanidine separates from 11 sample groups obtained at five localities. The basal air fall pumice (757.7±1.8 ka) and overlying ash flow tuff (762.2±4.7 ka) from near the source yield essentially the same dates within errors of analysis, suggesting that the two units were emplaced close in time. A date on distal Bishop air fall ash bed at Priant, California, ∼100 km to the west of the source area, is younger, 750.1±4.3 ka, but not significantly different within analytical error (±1 standard deviation). Previous dates of the Bishop Tuff, obtained by others using conventional K-Ar and the fission track method on zircons, ranged from ∼650 ka to ∼1.0 Ma. The most recent, generally accepted date by the K-Ar method on sanidine was 738±3 ka. We infer, as others before, that many K-Ar dates on sanidine feldspar are too young owing to incomplete degassing of radiogenic Ar during fusion in the K-Ar technique and that many older K-Ar dates are too old owing to detrital or xenocrystic contamination in the larger samples that are necessary for the technique. The new dates are similar to recent 40Ar/39Ar ages of the Bishop Tuff determined on individual samples by others but are derived from a larger proximal sample population and from multiple analysis of each sample. The results provide a definitive and precise age calibration of this widespread chronostratigraphic marker in the western United States and northeastern Pacific Ocean. We calculated the age of the M-B transition at five sites, assuming constant sedimentation rates, the age of the Bishop ash bed and one or more well-dated chronostratigraphic horizons above and below the Bishop Tuff ash bed and M-B transition, and stratigraphic separations between these datum levels. The age of the M-B transition is 774.2±2.8 ka, based on the average of eight such calculations, close to other recent determinations, and similar to that determined from the astronomically tuned polarity timescale. Our approach provides an alternative and surprisingly precise method for determining the age of the M-B and other chronostratigraphic levels. The above dates, calculated using U.S. Geological Survey values of 27.92 Ma for the Taylor Creek (TC) sanidine can be recalculated to other widely used values for these monitors. For example, using recently published values of 28.34 Ma (TC) and 523.1 Ma (McLure Mountain hornblende, MMhb-1), the resulting ages are ∼774 ka for the Bishop Tuff and ash bed and ∼789 ka for the M-B transition.


Geological Society of America Bulletin | 1987

Correlation of upper Cenozoic tephra layers between sediments of the western United States and eastern Pacific Ocean and comparison with biostratigraphic and magnetostratigraphic age data

Andrei M. Sarna-Wojcicki; S. D. Morrison; Charles E. Meyer; John W. Hillhouse

Five widespread upper Cenozoic tephra layers that are found within continental sediments of the western United States have been correlated with tephra layers in marine sediments in the Humboldt and Ventura basins of coastal California by similarities in major-and trace-element abundances; four of these layers have also been identified in deep-ocean sediments at DSDP sites 34, 36, 173, and 470 in the northeastern Pacific Ocean. These layers, erupted from vents in the Yellowstone National Park area of Wyoming and Idaho (Y), the Cascade Range of the Pacific Northwest (C), and the Long Valley area, California (L), are the Huckleberry Ridge ash bed (2.0 Ma, Y), Rio Dell ash bed (ca. 1.5 Ma, C), Bishop ash bed (0.74 Ma, L), Lava Creek B ash bed (0.62 Ma, Y), and Loleta ash bed (ca. 0.4 Ma, C). The isochronous nature of these beds allows direct comparison of chronologic and climatic data in a variety of depositional environments. For example, the widespread Bishop ash bed is correlated from proximal localities near Bishop in east-central California, where it is interbedded with volcanic and glacial deposits, to lacustrine beds near Tecopa, southeastern California, to deformed on-shore marine strata near Ventura, southwestern California, to deep-ocean sediments at site 470 in the eastern Pacific Ocean west of northern Mexico. The correlations allow us to compare isotopic ages determined for the tephra layers with ages of continental and marine biostratigraphic zones determined by magnetostratigraphy and other numerical age control and also provide iterative checks for available age control. Relative age variations of as much as 0.5 m.y. exist between marine biostratigraphic datums [for example, highest occurrence level of Discoaster brouweri and Calcidiscus tropicus (= C. macintyrei )], as determined from sedimentation rate curves derived from other age control available at each of several sites. These discrepancies may be due to several factors, among which are (1) diachronism of the lowest and highest occurrence levels of marine faunal and floral species with latitude because of ecologic thresholds, (2) upward reworking of older forms in hemipelagic sections adjacent to the tectonically active coast of the western United States and other similar analytical problems in identification of biostratigraphic and magnetostratigraphic datums, (3) dissolution of microfossils or selective diagenesis of some taxa, (4) lack of precision in isotopic age calibration of these datums, (5) errors in isotopic ages of tephra beds, and (6) large variations in sedimentation rates or hiatuses in stratigraphic sections that result in age errors of interpolated datums. Correlation of tephra layers between on-land marine and deep-ocean deposits indicates that some biostratigraphic datums (diatom and calcareous nannofossil) may be truly time transgressive because at some sites, they are found above and, at other sites, below the same tephra layers.


Quaternary Research | 1985

Correlation of the Rockland ash bed, a 400,000-year-old stratigraphic marker in northern California and western Nevada, and implications for middle Pleistocene paleogeography of central California

Andrei M. Sarna-Wojcicki; Charles E. Meyer; Harry R. Bowman; N.Timothy Hall; Paul C. Russell; Marta Jo Woodward; Janet L. Slate

Abstract Outcrops of an ash bed at several localities in northern California and western Nevada belong to a single air-fall ash layer, the informally named Rockland ash bed, dated at about 400,000 yr B.P. The informal Rockland pumice tuff breccia, a thick, coarse, compound tephra deposit southwest of Lassen Peak in northeastern California, is the near-source equivalent of the Rockland ash bed. Relations between initial thickness of the Rockland ash bed and distances to eruptive source suggest that the eruption was at least as great as that of the Mazama ash from Crater Lake, Oregon. Identification of the Rockland tephra allows temporal correlation of associated middle Pleistocene strata of diverse facies in separate depositional basins. Specifically, marine, littoral, estuarine, and fluvial strata of the Hookton and type Merced formations correlate with fluvial strata of the Santa Clara Formation and unnamed alluvium of Willits Valley and the Hollister area, in northwestern and west-central California, and with lacustrine beds of Mohawk Valley, fluvial deposits of the Red Bluff Formation of the eastern Sacramento Valley, and fluvial and glaciofluvial deposits of Fales Hot Spring, Carson City, and Washoe Valley areas in northeastern California and western Nevada. Stratigraphic relations of the Rockland ash bed and older tephra layers in the Great Valley and near San Francisco suggest that the southern Great Valley emerged above sea level about 2 my ago, that its southerly outlet to the ocean was closed sometime after about 2 my ago, and that drainage from the Great Valley to the ocean was established near the present, northerly outlet in the vicinity of San Francisco Bay about 0.6 my ago.


Quaternary Science Reviews | 2003

Age of the Mono Lake excursion and associated tephra

Larry Benson; Joseph C. Liddicoat; Joseph P. Smoot; Andrei M. Sarna-Wojcicki; Robert M. Negrini; Steve P. Lund

Abstract The Mono Lake excursion (MLE) is an important time marker that has been found in lake and marine sediments across much of the Northern Hemisphere. Dating of this event at its type locality, the Mono Basin of California, has yielded controversial results with the most recent effort concluding that the MLE may actually be the Laschamp excursion (Earth Planet. Sci. Lett. 197 (2002) 151). We show that a volcanic tephra (Ash ♯15) that occurs near the midpoint of the MLE has a date (not corrected for reservoir effect) of 28,620±300 14C yr BP (∼32,400 GISP2 yr BP) in the Pyramid Lake Basin of Nevada. Given the location of Ash ♯15 and the duration of the MLE in the Mono Basin, the event occurred between 31,500 and 33,300 GISP2 yr BP, an age range consistent with the position and age of the uppermost of two paleointensity minima in the NAPIS-75 stack that has been associated with the MLE (Philos. Trans. R. Soc. London Ser. A 358 (2000) 1009). The lower paleointensity minimum in the NAPIS-75 stack is considered to be the Laschamp excursion (Philos. Trans. R. Soc. London Ser. A 358 (2000) 1009).


Tectonics | 1996

Large-scale right-slip displacement on the East San Francisco Bay Region fault system, California: Implications for location of late Miocene to Pliocene Pacific plate boundary

Robert J. McLaughlin; W. V. Sliter; D. H. Sorg; P. C. Russell; Andrei M. Sarna-Wojcicki

A belt of northwardly younging Neogene and Quaternary volcanic rocks and hydrothermal vein systems, together with a distinctive Cretaceous terrane of the Franciscan Complex (the Permanente terrane), exhibits about 160 to 170 km of cumulative dextral offset across faults of the East San Francisco Bay Region (ESFBR) fault system. The offset hydrothermal veins and volcanic rocks range in age from .01 Ma at the northwest end to about 17.6 Ma at the southeast end. In the fault block between the San Andreas and ESFBR fault systems, where volcanic rocks are scarce, hydrothermal vein system ages clearly indicate that the northward younging thermal overprint affected these rocks beginning about 18 Ma. The age progression of these volcanic rocks and hydrothermal vein systems is consistent with previously proposed models that relate northward propagation of the San Andreas transform to the opening of an asthenospheric window beneath the North American plate margin in the wake of subducting lithosphere. The similarity in the amount of offset of the Permanente terrane across the ESFBR fault system to that derived by restoring continuity in the northward younging age progression of volcanic rocks and hydrothermal veins suggests a model in which 80–110 km of offset are taken up 8 to 6 Ma on a fault aligned with the Bloomfield-Tolay-Franklin-Concord-Sunol-Calaveras faults. An additional 50–70 km of cumulative slip are taken up ≤ 6 Ma by the Rogers Creek-Hayward and Concord-Franklin-Sunol-Calaveras faults. An alternative model in which the Permanente terrane is offset about 80 km by pre-Miocene faults does not adequately restore the distribution of 8–12 Ma volcanic rocks and hydrothermal veins to a single northwardly younging age trend. If 80–110 km of slip was taken up by the ESFBR fault system between 8 and 6 Ma, dextral slip rates were 40–55 mm/yr. Such high rates might occur if the ESFBR fault system rather than the San Andreas fault acted as the transform margin at this time. Major transpression across the boundary between the Pacific and North American plates at about 3 to 5 Ma would have resulted in the transfer of significant slip back to the San Francisco Peninsula segment of the San Andreas fault. Since that time, the ESFBR fault system has continued to slip at rates of 11–14 mm/yr. If this interpretation is valid, the ESFBR fault system was the Pacific-North American plate boundary between 8 and 6 Ma, and this boundary has migrated both eastward and westward with time, in response to changing plate margin geometry and plate motions.


Geology | 2003

Quaternary low-angle slip on detachment faults in Death Valley, California

Nicholas W. Hayman; Jeffrey R. Knott; Darrel S. Cowan; Eliza Nemser; Andrei M. Sarna-Wojcicki

Detachment faults on the west flank of the Black Mountains (Nevada and California) dip 29°-36° and cut subhorizontal layers of the 0.77 Ma Bishop ash. Steeply dipping normal faults confined to the hanging walls of the detachments offset layers of the 0.64 Ma Lava Creek B tephra and the base of 0.12-0.18 Ma Lake Manly gravel. These faults sole into and do not cut the low-angle detachments. Therefore the detachments accrued any measurable slip across the kinematically linked hanging-wall faults. An analysis of the orientations of hundreds of the hanging-wall faults shows that extension occurred at modest slip rates (<1 mm/yr) under a steep to vertically oriented maximum principal stress. The Black Mountain detachments are appropriately described as the basal detachments of near-critical Coulomb wedges. We infer that the formation of late Pleistocene and Holocene range-front fault scarps accompanied seismogenic slip on the detachments.


Quaternary International | 1992

Correlation of Pliocene and Pleistocene tephra layers between the Turkana Basin of East Africa and the Gulf of Aden

Francis H. Brown; Andrei M. Sarna-Wojcicki; Charles E. Meyer; Bereket Haileab

Abstract Electron-microprobe analyses of glass shards from volcanic ash in Pliocene and Pleistocene deep-sea sediments in the Gulf of Aden and the Somali Basin demonstrate that most of the tephra layers correlate with tephra layers known on land in the Turkana Basin of northern Kenya and southern Ethiopia. Previous correlations are reviewed, and new correlations proposed. Together these data provide correlations between the deep-sea cores, and to the land-based sections at eight levels ranging in age from about 4 to 0.7 Ma. Specifically, we correlate the Moiti Tuff (⩽4.1 Ma) with a tephra layer at 188.6 m depth in DSDP hole 231 and with a tephra layer at 150 m depth in DSDP hole 241, the Wargolo Tuff with a tephra layer at 179.7 m in DSDP Hole 231 and with a tephra layer at 155.3 m depth in DSDP Hole 232, the Lomogol Tuff (defined here) with a tephra layer at 165 m in DSDP Hole 232A, the Lokochot Tuff with a tephra layer at 140.1 m depth in DSDP Hole 232, the Tulu Bor Tuff with a tephra layer at 160.8 m depth in DSDP Hole 231, the Kokiselei Tuff with a tephra layer at 120 m depth in DSDP Hole 231 and with a tephra layer at 90.3 m depth in DSDP Hole 232, the Silbo Tuff (0.74 Ma) with a tephra layer at 35.5 m depth in DSDP Hole 231 and possibly with a tephra layer at 10.9 m depth in DSDP Hole 241. We also present analyses of other tephra from the deep sea cores for which correlative units on land are not yet known. The correlated tephra layers provide eight chronostratigraphic horizons that make it possible to temporally correlate paleoecological and paleoclimatic data between the terrestrial and deep-sea sites. Such correlations may make it possible to interpret faunal evolution in the Lake Turkana basin and other sites in East Africa within a broader regional or global paleoclimatic context.


Geological Society of America Bulletin | 1996

Record of middle Pleistocene climate change from Buck Lake, Cascade Range, southern Oregon—Evidence from sediment magnetism, trace-element geochemistry, and pollen

Joseph G. Rosenbaum; Richard L. Reynolds; David Adam; John W. Drexler; Andrei M. Sarna-Wojcicki; Gene Whitney

Comparison of systematic variations in sediment magnetic properties to changes in pollen assemblages in middle Pleistocene lake sediments from Buck Lake indicates that the magnetic properties are sensitive to changes in climate. Buck Lake is located in southern Oregon just east of the crest of the Cascade Range. Lacustrine sediments, from 5.2 to 19.4 m in depth in core, contain tephra layers with ages of ≈300–400 ka at 9.5 m and ≈400–470 ka at 19.9 m. In these sediments magnetic properties reflect the absolute amount and relative abundances of detrital Fe-oxide minerals, titanomagnetite and hematite. The lacustrine section is divided into four zones on the basis of magnetic properties. Two zones (19.4–17.4 m and 14.5–10.3 m) of high magnetic susceptibility contain abundant Fe oxides and correspond closely to pollen zones that are indicative of cold, dry environments. Two low-susceptibility zones (17.4–14.5 m and 10.3–5.3 m) contain lesser amounts of Fe oxides and largely coincide with zones of warm-climate pollen. Transitions from cold to warm climate based on pollen are preceded by sharp changes in magnetic properties. This relation suggests that land-surface processes responded to these climate changes more rapidly than did changes in vegetation as indicated by pollen frequencies. Magnetic properties have been affected by three factors: (1) dissolution of Fe oxides, (2) variation in heavy-mineral content, and (3) variation in abundance of fresh volcanic rock fragments. Trace-element geochemistry, employing Fe and the immobile elements Ti and Zr, is utilized to detect postdepositional dissolution of magnetic minerals that has affected the magnitude of magnetic properties with little effect on the pattern of magnetic-property variation. Comparison of Ti and Zr values, proxies for heavy-mineral content, to magnetic properties demonstrates that part of the variation in the amount of magnetite and nearly all of the variation in the amount of hematite are due to changes in heavy-mineral content. Variation in the quantity of fresh volcanic rock fragments is the other source of change in magnetite content. Magnetic-property variations probably arise primarily from changes in peak runoff. At low to moderate flows magnetic properties reflect only the quantities of heavy minerals derived from soil and highly weathered rock in the catchment. At high flows, however, fresh volcanic rock fragments may be produced by breaking of pebbles and cobbles, and such fragments greatly increase the magnetite content of the resulting sediment. Climatically controlled factors that would affect peak runoff levels include the accumulation and subsequent melting of winter snow pack, the seasonality of precipitation, and the degree of vegetation cover of the land surface.Our results do not distinguish among the possible contributions of these disparate factors.


Geological Society of America Bulletin | 1999

Surface faulting and paleoseismic history of the 1932 Cedar Mountain earthquake area, west-central Nevada, and implications for modern tectonics of the Walker Lane

John W. Bell; Craig M. dePolo; Alan R. Ramelli; Andrei M. Sarna-Wojcicki; Charles E. Meyer

The 1932 Cedar Mountain earthquake (M s 7.2) was one of the largest historical events in the Walker Lane region of western Nevada, and it produced a complicated strike-slip rupture pattern on multiple Quaternary faults distributed through three valleys. Primary, right-lateral surface ruptures occurred on north-striking faults in Monte Cristo Valley; small-scale lateral and normal offsets occurred in Stewart Valley; and secondary, normal faulting occurred on north-northeast–striking faults in the Gabbs Valley epicentral region. A reexamination of the surface ruptures provides new displacement and fault-zone data: maximum cumulative offset is estimated to be 2.7 m, and newly recognized faults extend the maximum width and end-to-end length of the rupture zone to 17 and 75 km, respectively. A detailed Quaternary allostratigraphic chronology based on regional alluvial-geomorphic relationships, tephrochronology, and radiocarbon dating provides a framework for interpreting the paleoseismic history of the fault zone. A late Wisconsinan alluvial-fan and piedmont unit containing a 32–36 ka tephra layer is a key stratigraphic datum for paleoseismic measurements. Exploratory trenching and radiocarbon dating of tectonic stratigraphy provide the first estimates for timing of late Quaternary faulting along the Cedar Mountain fault zone. Three trenches display evidence for six faulting events, including that in 1932, during the past 32–36 ka. Radiocarbon dating of organic soils interstratified with tectonically ponded silts establishes best-fit ages of the pre-1932 events at 4, 5, 12, 15, and 18 ka, each with ±2 ka uncertainties. On the basis of an estimated cumulative net slip of 6–12 m for the six faulting events, minimum and maximum late Quaternary slip rates are 0.2 and 0.7 mm/yr, respectively, and the preferred rate is 0.4–0.5 mm/yr. The average recurrence (interseismic) interval is 3600 yr. The relatively uniform thickness of the ponded deposits suggests that similar-size, characteristic rupture events may characterize late Quaternary slip on the zone. A comparison of event timing with the average late Quaternary recurrence interval indicates that slip has been largely regular (periodic) rather than temporally clustered. To account for the spatial separation of the primary surface faulting in Monte Cristo Valley from the epicenter and for a factor-of-two-to-three disparity between the instrumentally and geologically determined seismic moments associated with the earthquake, we hypothesize two alternative tectonic models containing undetected subevents. Either model would adequately account for the observed faulting on the basis of wrench-fault kinematics that may be associated with the Walker Lane. The 1932 Cedar Mountain earthquake is considered an important modern analogue for seismotectonic modeling and estimating seismic hazard in the Walker Lane region. In contrast to most other historical events in the Basin and Range province, the 1932 event did not occur along a major range-bounding fault, and no single, throughgoing basement structure can account for the observed rupture pattern. The 1932 faulting supports the concept that major earthquakes in the Basin and Range province can exhibit complicated distributive rupture patterns and that slip rate may not be a reliable criterion for modeling seismic hazard.


Palaeogeography, Palaeoclimatology, Palaeoecology | 2000

Environmental history and tephrostratigraphy at Carp Lake, southwestern Columbia Basin, Washington, USA

Cathy Whitlock; Andrei M. Sarna-Wojcicki; Patrick J. Bartlein; Rudy J. Nickmann

Sediment cores from Carp Lake provide a pollen record of the last ca. 125,000 years that helps disclose vegetational and climatic conditions from the present day to the previous interglaciation (120‐133 ka). The core also contained 15 tephra layers, which were characterised by electron-microprobe analysis of volcanic glass shards. Identified tephra include Mount St. Helens Ye, 3.69 ka; Mazama ash bed, 7.54 ka; Mount St. Helens layer C, 35‐50 ka; an unnamed Mount St. Helens tephra, 75‐150 ka; the tephra equivalent of layer E at Pringle Falls, Oregon, <218 ka; and an andesitic tephra layer similar to that at Tulelake, California, 174 ka. Ten calibrated radiocarbon ages and the ages of Mount St. Helens Ye, Mazama ash, and the unnamed Mount St. Helens tephra were used to develop an age‐depth model. This model was refined by also incorporating the age of marine oxygen isotope stage (IS) boundary 4=5 (73.9 ka) and the age of IS-5e (125 ka). The justification for this age-model is based on an analysis of the pollen record and lithologic data. The pollen record is divided into 11 assemblage zones that describe alternations between periods of montane conifer forest, pine forest, and steppe. The previous interglacial period (IS-5e) supported temperate xerothermic forests of pine and oak and a northward and westward expansion of steppe and juniper woodland, compared to their present occurrence. The period from 83 to 117 ka contains intervals of pine forest and parkland alternating with pine‐spruce forest, suggesting shifts from cold humid to cool temperate conditions. Between 73 and 83 ka, a forest of oak, hemlock, Douglas-fir, and fir was present that has no modern analogue. It suggests warm wet summers and cool wet winters. Cool humid conditions during the mid-Wisconsin interval supported mixed conifer forest with Douglas-fir and spruce. The glacial interval featured cold dry steppe, with an expansion of spruce in the late-glacial. Xerothermic communities prevailed in the early Holocene, when temperate steppe was widespread and the lake dried intermittently. The middle Holocene was characterised by ponderosa pine forest, and the modern vegetation was established in the last 3900 yr, when ponderosa pine, Douglas-fir, fir, and oak were part of the local vegetation.

Collaboration


Dive into the Andrei M. Sarna-Wojcicki's collaboration.

Top Co-Authors

Avatar

Elmira Wan

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Charles E. Meyer

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Robert J. Fleck

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

David Adam

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Jeffrey R. Knott

California State University

View shared research outputs
Top Co-Authors

Avatar

David B. Wahl

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Robert J. McLaughlin

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Hugh J. Rieck

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Janet L. Slate

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge