Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrei Pyko is active.

Publication


Featured researches published by Andrei Pyko.


BMJ | 2014

Long term exposure to ambient air pollution and incidence of acute coronary events: prospective cohort study and meta-analysis in 11 European cohorts from the ESCAPE Project

Giulia Cesaroni; Francesco Forastiere; Massimo Stafoggia; Zorana Jovanovic Andersen; Chiara Badaloni; Rob Beelen; Barbara Caracciolo; Ulf de Faire; Raimund Erbel; Kirsten Thorup Eriksen; Laura Fratiglioni; Claudia Galassi; Regina Hampel; Margit Heier; Frauke Hennig; Agneta Hilding; Barbara Hoffmann; Danny Houthuijs; Karl-Heinz Jöckel; Michal Korek; Timo Lanki; Karin Leander; Patrik K. E. Magnusson; Enrica Migliore; Caes-Göran Ostenson; Kim Overvad; Nancy L. Pedersen; Juha Pekkanen J; Johanna Penell; Göran Pershagen

Objectives To study the effect of long term exposure to airborne pollutants on the incidence of acute coronary events in 11 cohorts participating in the European Study of Cohorts for Air Pollution Effects (ESCAPE). Design Prospective cohort studies and meta-analysis of the results. Setting Cohorts in Finland, Sweden, Denmark, Germany, and Italy. Participants 100 166 people were enrolled from 1997 to 2007 and followed for an average of 11.5 years. Participants were free from previous coronary events at baseline. Main outcome measures Modelled concentrations of particulate matter <2.5 μm (PM2.5), 2.5-10 μm (PMcoarse), and <10 μm (PM10) in aerodynamic diameter, soot (PM2.5 absorbance), nitrogen oxides, and traffic exposure at the home address based on measurements of air pollution conducted in 2008-12. Cohort specific hazard ratios for incidence of acute coronary events (myocardial infarction and unstable angina) per fixed increments of the pollutants with adjustment for sociodemographic and lifestyle risk factors, and pooled random effects meta-analytic hazard ratios. Results 5157 participants experienced incident events. A 5 μg/m3 increase in estimated annual mean PM2.5 was associated with a 13% increased risk of coronary events (hazard ratio 1.13, 95% confidence interval 0.98 to 1.30), and a 10 μg/m3 increase in estimated annual mean PM10 was associated with a 12% increased risk of coronary events (1.12, 1.01 to 1.25) with no evidence of heterogeneity between cohorts. Positive associations were detected below the current annual European limit value of 25 μg/m3 for PM2.5 (1.18, 1.01 to 1.39, for 5 μg/m3 increase in PM2.5) and below 40 μg/m3 for PM10 (1.12, 1.00 to 1.27, for 10 μg/m3 increase in PM10). Positive but non-significant associations were found with other pollutants. Conclusions Long term exposure to particulate matter is associated with incidence of coronary events, and this association persists at levels of exposure below the current European limit values.


Epidemiology | 2014

Long-term exposure to air pollution and cardiovascular mortality : An analysis of 22 European cohorts

Rob Beelen; Massimo Stafoggia; Ole Raaschou-Nielsen; Zorana Jovanovic Andersen; Wei W. Xun; Klea Katsouyanni; Konstantina Dimakopoulou; Bert Brunekreef; Gudrun Weinmayr; Barbara Hoffmann; Kathrin Wolf; Evangelia Samoli; Danny Houthuijs; Mark J. Nieuwenhuijsen; Anna Oudin; Bertil Forsberg; David Olsson; Veikko Salomaa; Timo Lanki; Tarja Yli-Tuomi; Bente Oftedal; Geir Aamodt; Per Nafstad; Ulf de Faire; Nancy L. Pedersen; Claes-Göran Östenson; Laura Fratiglioni; Johanna Penell; Michal Korek; Andrei Pyko

Background: Air pollution has been associated with cardiovascular mortality, but it remains unclear as to whether specific pollutants are related to specific cardiovascular causes of death. Within the multicenter European Study of Cohorts for Air Pollution Effects (ESCAPE), we investigated the associations of long-term exposure to several air pollutants with all cardiovascular disease (CVD) mortality, as well as with specific cardiovascular causes of death. Methods: Data from 22 European cohort studies were used. Using a standardized protocol, study area–specific air pollution exposure at the residential address was characterized as annual average concentrations of the following: nitrogen oxides (NO2 and NOx); particles with diameters of less than 2.5 &mgr;m (PM2.5), less than 10 &mgr;m (PM10), and 10 &mgr;m to 2.5 &mgr;m (PMcoarse); PM2.5 absorbance estimated by land-use regression models; and traffic indicators. We applied cohort-specific Cox proportional hazards models using a standardized protocol. Random-effects meta-analysis was used to obtain pooled effect estimates. Results: The total study population consisted of 367,383 participants, with 9994 deaths from CVD (including 4,992 from ischemic heart disease, 2264 from myocardial infarction, and 2484 from cerebrovascular disease). All hazard ratios were approximately 1.0, except for particle mass and cerebrovascular disease mortality; for PM2.5, the hazard ratio was 1.21 (95% confidence interval = 0.87–1.69) per 5 &mgr;g/m3 and for PM10, 1.22 (0.91–1.63) per 10 &mgr;g/m3. Conclusion: In a joint analysis of data from 22 European cohorts, most hazard ratios for the association of air pollutants with mortality from overall CVD and with specific CVDs were approximately 1.0, with the exception of particulate mass and cerebrovascular disease mortality for which there was suggestive evidence for an association.


Environmental Health Perspectives | 2014

Long-term exposure to ambient air pollution and incidence of cerebrovascular events: results from 11 European cohorts within the ESCAPE project.

Massimo Stafoggia; Giulia Cesaroni; Annette Peters; Zorana Jovanovic Andersen; Chiara Badaloni; Rob Beelen; Barbara Caracciolo; Josef Cyrys; Ulf de Faire; Kees de Hoogh; Kirsten Thorup Eriksen; Laura Fratiglioni; Claudia Galassi; Bruna Gigante; Aki S. Havulinna; Frauke Hennig; Agneta Hilding; Gerard Hoek; Barbara Hoffmann; Danny Houthuijs; Michal Korek; Timo Lanki; Karin Leander; Patrik K. E. Magnusson; Christa Meisinger; Enrica Migliore; Kim Overvad; Claes-Göran Östenson; Nancy L. Pedersen; Juha Pekkanen

Background: Few studies have investigated effects of air pollution on the incidence of cerebrovascular events. Objectives: We assessed the association between long-term exposure to multiple air pollutants and the incidence of stroke in European cohorts. Methods: Data from 11 cohorts were collected, and occurrence of a first stroke was evaluated. Individual air pollution exposures were predicted from land-use regression models developed within the European Study of Cohorts for Air Pollution Effects (ESCAPE). The exposures were: PM2.5 [particulate matter (PM) ≤ 2.5 μm in diameter], coarse PM (PM between 2.5 and 10 μm), PM10 (PM ≤ 10 μm), PM2.5 absorbance, nitrogen oxides, and two traffic indicators. Cohort-specific analyses were conducted using Cox proportional hazards models. Random-effects meta-analysis was used for pooled effect estimation. Results: A total of 99,446 study participants were included, 3,086 of whom developed stroke. A 5-μg/m3 increase in annual PM2.5 exposure was associated with 19% increased risk of incident stroke [hazard ratio (HR) = 1.19, 95% CI: 0.88, 1.62]. Similar findings were obtained for PM10. The results were robust to adjustment for an extensive list of cardiovascular risk factors and noise coexposure. The association with PM2.5 was apparent among those ≥ 60 years of age (HR = 1.40, 95% CI: 1.05, 1.87), among never-smokers (HR = 1.74, 95% CI: 1.06, 2.88), and among participants with PM2.5 exposure < 25 μg/m3 (HR = 1.33, 95% CI: 1.01, 1.77). Conclusions: We found suggestive evidence of an association between fine particles and incidence of cerebrovascular events in Europe, even at lower concentrations than set by the current air quality limit value. Citation: Stafoggia M, Cesaroni G, Peters A, Andersen ZJ, Badaloni C, Beelen R, Caracciolo B, Cyrys J, de Faire U, de Hoogh K, Eriksen KT, Fratiglioni L, Galassi C, Gigante B, Havulinna AS, Hennig F, Hilding A, Hoek G, Hoffmann B, Houthuijs D, Korek M, Lanki T, Leander K, Magnusson PK, Meisinger C, Migliore E, Overvad K, Östenson CG, Pedersen NL, Pekkanen J, Penell J, Pershagen G, Pundt N, Pyko A, Raaschou-Nielsen O, Ranzi A, Ricceri F, Sacerdote C, Swart WJ, Turunen AW, Vineis P, Weimar C, Weinmayr G, Wolf K, Brunekreef B, Forastiere F. 2014. Long-term exposure to ambient air pollution and incidence of cerebrovascular events: results from 11 European cohorts within the ESCAPE project. Environ Health Perspect 122:919–925; http://dx.doi.org/10.1289/ehp.1307301


WOS | 2014

Long-term Exposure to Air Pollution and Cardiovascular Mortality An Analysis of 22 European Cohorts

Rob Beelen; Massimo Stafoggia; Ole Raaschou-Nielsen; Zorana Jovanovic Andersen; Wei W. Xun; Klea Katsouyanni; Konstantina Dimakopoulou; Bert Brunekreef; Gudrun Weinmayr; Barbara Hoffmann; Kathrin Wolf; Evangelia Samoli; Danny Houthuijs; Mark J. Nieuwenhuijsen; Anna Oudin; Bertil Forsberg; David Olsson; Veikko Salomaa; Timo Lanki; Tarja Yli-Tuomi; Bente Oftedal; Geir Aamodt; Per Nafstad; Ulf de Faire; Nancy L. Pedersen; Claes-Göran Östenson; Laura Fratiglioni; Johanna Penell; Michal Korek; Andrei Pyko

Background: Air pollution has been associated with cardiovascular mortality, but it remains unclear as to whether specific pollutants are related to specific cardiovascular causes of death. Within the multicenter European Study of Cohorts for Air Pollution Effects (ESCAPE), we investigated the associations of long-term exposure to several air pollutants with all cardiovascular disease (CVD) mortality, as well as with specific cardiovascular causes of death. Methods: Data from 22 European cohort studies were used. Using a standardized protocol, study area–specific air pollution exposure at the residential address was characterized as annual average concentrations of the following: nitrogen oxides (NO2 and NOx); particles with diameters of less than 2.5 &mgr;m (PM2.5), less than 10 &mgr;m (PM10), and 10 &mgr;m to 2.5 &mgr;m (PMcoarse); PM2.5 absorbance estimated by land-use regression models; and traffic indicators. We applied cohort-specific Cox proportional hazards models using a standardized protocol. Random-effects meta-analysis was used to obtain pooled effect estimates. Results: The total study population consisted of 367,383 participants, with 9994 deaths from CVD (including 4,992 from ischemic heart disease, 2264 from myocardial infarction, and 2484 from cerebrovascular disease). All hazard ratios were approximately 1.0, except for particle mass and cerebrovascular disease mortality; for PM2.5, the hazard ratio was 1.21 (95% confidence interval = 0.87–1.69) per 5 &mgr;g/m3 and for PM10, 1.22 (0.91–1.63) per 10 &mgr;g/m3. Conclusion: In a joint analysis of data from 22 European cohorts, most hazard ratios for the association of air pollutants with mortality from overall CVD and with specific CVDs were approximately 1.0, with the exception of particulate mass and cerebrovascular disease mortality for which there was suggestive evidence for an association.


Environmental Health Perspectives | 2014

Long-term aircraft noise exposure and body mass index, waist circumference, and type 2 diabetes: a prospective study.

Charlotta Eriksson; Agneta Hilding; Andrei Pyko; Gösta Bluhm; Göran Pershagen; Claes-Göran Östenson

Background: Long-term aircraft noise exposure may increase the risk of cardiovascular disease, but no study has investigated chronic effects on the metabolic system. Objectives: The aim of this study was to investigate effects of long-term aircraft noise exposure on body mass index (BMI), waist circumference, and type 2 diabetes. Furthermore, we explored the modifying effects of sleep disturbance. Methods: This prospective cohort study of residents of Stockholm County, Sweden, followed 5,156 participants with normal baseline oral glucose tolerance tests (OGTT) for up to 10 years. Exposure to aircraft noise was estimated based on residential history. Information on outcomes and confounders was obtained from baseline and follow-up surveys and examinations, and participants who developed prediabetes or type 2 diabetes were identified by self-reported physician diagnosis or OGTT at follow-up. Adjusted associations were assessed by linear, logistic, and random-effects models. Results: The mean (± SD) increases in BMI and waist circumference during follow-up were 1.09 ± 1.97 kg/m2 and 4.39 ± 6.39 cm, respectively. The cumulative incidence of prediabetes and type 2 diabetes was 8% and 3%, respectively. Based on an ordinal noise variable, a 5-dB(A) increase in aircraft noise was associated with a greater increase in waist circumference of 1.51 cm (95% CI: 1.13, 1.89), fully adjusted. This association appeared particularly strong among those who did not change their home address during the study period, which may be a result of lower exposure misclassification. However, no clear associations were found for BMI or type 2 diabetes. Furthermore, sleep disturbances did not appear to modify the associations with aircraft noise. Conclusions: Long-term aircraft noise exposure may be linked to metabolic outcomes, in particular increased waist circumference. Citation: Eriksson C, Hilding A, Pyko A, Bluhm G, Pershagen G, Östenson CG. 2014. Long-term aircraft noise exposure and body mass index, waist circumference, and type 2 diabetes: a prospective study. Environ Health Perspect 122:687–694; http://dx.doi.org/10.1289/ehp.1307115


Occupational and Environmental Medicine | 2015

Exposure to traffic noise and markers of obesity

Andrei Pyko; Charlotta Eriksson; Bente Oftedal; Agneta Hilding; Claes-Göran Östenson; Norun Hjertager Krog; Bettina Julin; Gunn Marit Aasvang; Göran Pershagen

Objectives Limited evidence suggests adverse effects of traffic noise exposure on the metabolic system. This study investigates the association between road traffic noise and obesity markers as well as the role of combined exposure to multiple sources of traffic noise. Methods In a cross-sectional study performed in 2002–2006, we assessed exposure to noise from road traffic, railways and aircraft at the residences of 5075 Swedish men and women, primarily from suburban and semirural areas of Stockholm County. A detailed questionnaire and medical examination provided information on markers of obesity and potential confounders. Multiple linear and logistic regression models were used to assess associations between traffic noise and body mass index (BMI), waist circumference and waist–hip ratio using WHO definitions of obesity. Results Road traffic noise was significantly related to waist circumference with a 0.21 cm (95% CI 0.01 to 0.41) increase per 5 dB(A) rise in Lden. The OR for central obesity among those exposed to road traffic noise ≥45 dB(A) was 1.18 (95% CI 1.03 to 1.34) in comparison to those exposed below this level. Similar results were seen for waist–hip ratio (OR 1.29; 95% CI 1.14 to 1.45) but not for BMI (OR 0.89; 95% CI 0.76 to 1.04). Central obesity was also associated with exposure to railway and aircraft noise, and a particularly high risk was seen for combined exposure to all three sources of traffic noise (OR 1.95; 95% CI 1.24 to 3.05). Conclusions Our results suggest that traffic noise exposure can increase the risk of central obesity. Combined exposure to different sources of traffic noise may convey a particularly high risk.


Environmental Research | 2015

Road traffic noise and markers of obesity - a population-based study.

Bente Oftedal; Norun Hjertager Krog; Andrei Pyko; Charlotta Eriksson; Sidsel Graff-Iversen; Margaretha Haugen; PerE Schwarze; Göran Pershagen; Gunn Marit Aasvang

BACKGROUND Noise has been found to be associated with endocrine changes and cardiovascular disease. Increased cortisol levels and chronic sleep problems due to noise may increase the risk of obesity. OBJECTIVES We investigated the relationship between road traffic noise and obesity markers. Furthermore, we explored the modifying role of noise sensitivity, noise annoyance, and sleep disturbances. METHODS We used data from a population-based study, HUBRO (N=15,085), and its follow-up study HELMILO (N=8410) conducted in Oslo, Norway. Measurements were used to define body mass index (BMI), waist circumference (WC), waist-hip ratio (WHR), and these binary outcomes: BMI≥30kg/m(2), WC≥102cm (men)/88cm (women), and WHR≥0.90 (men)/0.85 (women). Modelled levels of road traffic noise (Lden) were assigned to each participants home address. Linear and logistic regression models were used to examine the associations. RESULTS The results indicated no significant associations between road traffic noise and obesity markers in the total populations. However, in highly noise sensitive women (n=1106) a 10dB increase in noise level was associated with a slope (=beta) of 1.02 (95% confidence interval (CI): 1.01, 1.03) for BMI, 1.01 (CI: 1.00, 1.02) for WC, and an odds ratio (OR) of 1.24 (CI: 1.01, 1.53) for WHR ≥0.85. The associations appeared weaker in highly noise sensitive men. We found no effect modification of noise annoyance or sleep disturbances. In a sub-population with bedroom facing a road, the associations increased in men (e.g. an OR of 1.25 (CI: 0.88, 1.78) for BMI ≥30kg/m(2)), but not in women. Among long-term residents the associations increased for BMI ≥30kg/m(2) (OR of 1.07 (CI: 0.93, 1.24) in men and 1.10 (CI: 0.97, 1.26) in women), but not for the other outcomes. CONCLUSION In an adult urban Scandinavian population, road traffic noise was positively associated with obesity markers among highly noise sensitive women. The associations appeared stronger among men with bedroom facing a street, representing a population with more accurately assigned exposure.


International Journal of Cancer | 2017

Outdoor air pollution and risk for kidney parenchyma cancer in 14 European cohorts

Ole Raaschou-Nielsen; Marie Pedersen; Massimo Stafoggia; Gudrun Weinmayr; Zorana Jovanovic Andersen; Claudia Galassi; Johan Nilsson Sommar; Bertil Forsberg; David Olsson; Bente Oftedal; Norun Hjertager Krog; Gunn Marit Aasvang; Andrei Pyko; Göran Pershagen; Michal Korek; Ulf de Faire; Nancy L. Pedersen; Claes Göran Östenson; Laura Fratiglioni; Mette Sørensen; Kirsten Thorup Eriksen; Anne Tjønneland; Petra H. Peeters; H. Bas Bueno-de-Mesquita; Michelle Plusquin; Timothy J. Key; Andrea Jaensch; Gabriele Nagel; Bernhard Föger; Meng Wang

Several studies have indicated weakly increased risk for kidney cancer among occupational groups exposed to gasoline vapors, engine exhaust, polycyclic aromatic hydrocarbons and other air pollutants, although not consistently. It was the aim to investigate possible associations between outdoor air pollution at the residence and the incidence of kidney parenchyma cancer in the general population. We used data from 14 European cohorts from the ESCAPE study. We geocoded and assessed air pollution concentrations at baseline addresses by land‐use regression models for particulate matter (PM10, PM2.5, PMcoarse, PM2.5 absorbance (soot)) and nitrogen oxides (NO2, NOx), and collected data on traffic. We used Cox regression models with adjustment for potential confounders for cohort‐specific analyses and random effects models for meta‐analyses to calculate summary hazard ratios (HRs). The 289,002 cohort members contributed 4,111,908 person‐years at risk. During follow‐up (mean 14.2 years) 697 incident cancers of the kidney parenchyma were diagnosed. The meta‐analyses showed higher HRs in association with higher PM concentration, e.g. HR = 1.57 (95%CI: 0.81–3.01) per 5 μg/m3 PM2.5 and HR = 1.36 (95%CI: 0.84–2.19) per 10−5m−1 PM2.5 absorbance, albeit never statistically significant. The HRs in association with nitrogen oxides and traffic density on the nearest street were slightly above one. Sensitivity analyses among participants who did not change residence during follow‐up showed stronger associations, but none were statistically significant. Our study provides suggestive evidence that exposure to outdoor PM at the residence may be associated with higher risk for kidney parenchyma cancer; the results should be interpreted cautiously as associations may be due to chance.


Environmental Health Perspectives | 2017

Long-Term Exposure to Ambient Air Pollution and Incidence of Postmenopausal Breast Cancer in 15 European Cohorts within the ESCAPE Project

Zorana Jovanovic Andersen; Massimo Stafoggia; Gudrun Weinmayr; Marie Pedersen; Claudia Galassi; Jeanette Therming Jørgensen; Anna Oudin; Bertil Forsberg; David Olsson; Bente Oftedal; Gunn Marit Aasvang; Geir Aamodt; Andrei Pyko; Göran Pershagen; Michal Korek; Ulf de Faire; Nancy L. Pedersen; Claes Göran Östenson; Laura Fratiglioni; Kirsten Thorup Eriksen; Anne Tjønneland; Petra H. Peeters; Bas Bueno-de-Mesquita; Michelle Plusquin; Timothy J. Key; Andrea Jaensch; Gabriele Nagel; Alois Lang; Meng Wang; Ming-Yi Tsai

Background: Epidemiological evidence on the association between ambient air pollution and breast cancer risk is inconsistent. Objective: We examined the association between long-term exposure to ambient air pollution and incidence of postmenopausal breast cancer in European women. Methods: In 15 cohorts from nine European countries, individual estimates of air pollution levels at the residence were estimated by standardized land-use regression models developed within the European Study of Cohorts for Air Pollution Effects (ESCAPE) and Transport related Air Pollution and Health impacts - Integrated Methodologies for Assessing Particulate Matter (TRANSPHORM) projects: particulate matter (PM) ≤2.5μm, ≤10μm, and 2.5–10μm in diameter (PM2.5, PM10, and PMcoarse, respectively); PM2.5 absorbance; nitrogen oxides (NO2 and NOx); traffic intensity; and elemental composition of PM. We estimated cohort-specific associations between breast cancer and air pollutants using Cox regression models, adjusting for major lifestyle risk factors, and pooled cohort-specific estimates using random-effects meta-analyses. Results: Of 74,750 postmenopausal women included in the study, 3,612 developed breast cancer during 991,353 person-years of follow-up. We found positive and statistically insignificant associations between breast cancer and PM2.5 {hazard ratio (HR)=1.08 [95% confidence interval (CI): 0.77, 1.51] per 5 μg/m3}, PM10 [1.07 (95% CI: 0.89, 1.30) per 10 μg/m3], PMcoarse [1.20 (95% CI: 0.96, 1.49 per 5 μg/m3], and NO2 [1.02 (95% CI: 0.98, 1.07 per 10 μg/m3], and a statistically significant association with NOx [1.04 (95% CI: 1.00, 1.08) per 20 μg/m3, p=0.04]. Conclusions: We found suggestive evidence of an association between ambient air pollution and incidence of postmenopausal breast cancer in European women. https://doi.org/10.1289/EHP1742


Neuro-oncology | 2018

Long-term exposure to ambient air pollution and incidence of brain tumor: the European Study of Cohorts for Air Pollution Effects (ESCAPE)

Zorana Jovanovic Andersen; Marie Pedersen; Gudrun Weinmayr; Massimo Stafoggia; Claudia Galassi; Jeanette Therming Jørgensen; Johan Nilsson Sommar; Bertil Forsberg; David Olsson; Bente Oftedal; Gunn Marit Aasvang; Per E. Schwarze; Andrei Pyko; Göran Pershagen; Michal Korek; Ulf de Faire; Claes Göran Östenson; Laura Fratiglioni; Kirsten Thorup Eriksen; Aslak Harbo Poulsen; Anne Tjønneland; Elvira Vaclavik Bräuner; Petra H. Peeters; Bas Bueno-de-Mesquita; Andrea Jaensch; Gabriele Nagel; Alois Lang; Meng Wang; Ming-Yi Tsai; Sara Grioni

Abstract Background Epidemiological evidence on the association between ambient air pollution and brain tumor risk is sparse and inconsistent. Methods In 12 cohorts from 6 European countries, individual estimates of annual mean air pollution levels at the baseline residence were estimated by standardized land-use regression models developed within the ESCAPE and TRANSPHORM projects: particulate matter (PM) ≤2.5, ≤10, and 2.5–10 μm in diameter (PM2.5, PM10, and PMcoarse), PM2.5 absorbance, nitrogen oxides (NO2 and NOx) and elemental composition of PM. We estimated cohort-specific associations of air pollutant concentrations and traffic intensity with total, malignant, and nonmalignant brain tumor, in separate Cox regression models, adjusting for risk factors, and pooled cohort-specific estimates using random-effects meta-analyses. Results Of 282194 subjects from 12 cohorts, 466 developed malignant brain tumors during 12 years of follow-up. Six of the cohorts also had data on nonmalignant brain tumor, where among 106786 subjects, 366 developed brain tumor: 176 nonmalignant and 190 malignant. We found a positive, statistically nonsignificant association between malignant brain tumor and PM2.5 absorbance (hazard ratio and 95% CI: 1.67; 0.89–3.14 per 10–5/m3), and weak positive or null associations with the other pollutants. Hazard ratio for PM2.5 absorbance (1.01; 0.38–2.71 per 10–5/m3) and all other pollutants were lower for nonmalignant than for malignant brain tumors. Conclusion We found suggestive evidence of an association between long-term exposure to PM2.5 absorbance indicating traffic-related air pollution and malignant brain tumors, and no association with overall or nonmalignant brain tumors.

Collaboration


Dive into the Andrei Pyko's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bente Oftedal

Norwegian Institute of Public Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge