Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrei Thomas-Tikhonenko is active.

Publication


Featured researches published by Andrei Thomas-Tikhonenko.


Nature Genetics | 2006

Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster

Michael Dews; Asal Homayouni; Duonan Yu; Danielle A. Murphy; Cinzia Sevignani; Emma E. Furth; William M. F. Lee; Greg H. Enders; Joshua T. Mendell; Andrei Thomas-Tikhonenko

Human adenocarcinomas commonly harbor mutations in the KRAS and MYC proto-oncogenes and the TP53 tumor suppressor gene. All three genetic lesions are potentially pro-angiogenic, as they sustain production of vascular endothelial growth factor (VEGF). Yet Kras-transformed mouse colonocytes lacking p53 formed indolent, poorly vascularized tumors, whereas additional transduction with a Myc-encoding retrovirus promoted vigorous vascularization and growth. In addition, VEGF levels were unaffected by Myc, but enhanced neovascularization correlated with downregulation of anti-angiogenic thrombospondin-1 (Tsp1) and related proteins, such as connective tissue growth factor (CTGF). Both Tsp1 and CTGF are predicted targets for repression by the miR-17-92 microRNA cluster, which was upregulated in colonocytes coexpressing K-Ras and c-Myc. Indeed, miR-17-92 knockdown with antisense 2′-O-methyl oligoribonucleotides partly restored Tsp1 and CTGF expression; in addition, transduction of Ras-only cells with a miR-17-92–encoding retrovirus reduced Tsp1 and CTGF levels. Notably, miR-17-92–transduced cells formed larger, better-perfused tumors. These findings establish a role for microRNAs in non–cell-autonomous Myc-induced tumor phenotypes.


Journal of Clinical Investigation | 2007

Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma

Ravi K. Amaravadi; Duonan Yu; Julian J. Lum; Thi Bui; Maria Christophorou; Gerard I. Evan; Andrei Thomas-Tikhonenko; Craig B. Thompson

Autophagy is a lysosome-dependent degradative pathway frequently activated in tumor cells treated with chemotherapy or radiation. Whether autophagy observed in treated cancer cells represents a mechanism that allows tumor cells to survive therapy or a mechanism for initiating a nonapoptotic form of programmed cell death remains controversial. To address this issue, the role of autophagy in a Myc-induced model of lymphoma generated from cells derived from p53ER(TAM)/p53ER(TAM) mice (with ER denoting estrogen receptor) was examined. Such tumors are resistant to apoptosis due to a lack of nuclear p53. Systemic administration of tamoxifen led to p53 activation and tumor regression followed by tumor recurrence. Activation of p53 was associated with the rapid appearance of apoptotic cells and the induction of autophagy in surviving cells. Inhibition of autophagy with either chloroquine or ATG5 short hairpin RNA (shRNA) enhanced the ability of either p53 activation or alkylating drug therapy to induce tumor cell death. These studies provide evidence that autophagy serves as a survival pathway in tumor cells treated with apoptosis activators and a rationale for the use of autophagy inhibitors such as chloroquine in combination with therapies designed to induce apoptosis in human cancers.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Lin-28B transactivation is necessary for Myc-mediated let-7 repression and proliferation

Tsung Cheng Chang; Lauren R. Zeitels; Hun-Way Hwang; Raghu R. Chivukula; Michael Dews; Jason J. Jung; Ping Gao; Chi V. Dang; Michael Beer; Andrei Thomas-Tikhonenko; Joshua T. Mendell

Direct control of microRNA (miRNA) expression by oncogenic and tumor suppressor networks results in frequent dysregulation of miRNAs in cancer cells and contributes to tumorigenesis. We previously demonstrated that activation of the c-Myc oncogenic transcription factor (Myc) broadly influences miRNA expression and in particular leads to widespread miRNA down-regulation. miRNA transcripts repressed by Myc include several with potent tumor suppressor activity such as miR-15a/16–1, miR-34a, and let-7 family members. In this study, we have investigated mechanisms downstream of Myc that contribute to miRNA repression. Consistent with transcriptional down-regulation, Myc activity results in the decreased abundance of multiple miRNA primary transcripts. Surprisingly, however, primary transcripts encoding several let-7 miRNAs are not reduced in the high Myc state, suggesting a posttranscriptional mechanism of repression. The Lin-28 and Lin-28B RNA binding proteins were recently demonstrated to negatively regulate let-7 biogenesis. We now show that Myc induces Lin-28B expression in multiple human and mouse tumor models. Chromatin immunoprecipitation and reporter assays reveal direct association of Myc with the Lin-28B promoter resulting in transcriptional transactivation. Moreover, we document that activation of Lin-28B is necessary and sufficient for Myc-mediated let-7 repression. Accordingly, Lin-28B loss-of-function significantly impairs Myc-dependent cellular proliferation. These findings highlight an important role for Lin-28B in Myc-driven cellular phenotypes and uncover an orchestration of transcriptional and posttranscriptional mechanisms in Myc-mediated reprogramming of miRNA expression.


Molecular Cell | 2010

The miR-17-92 microRNA cluster regulates multiple components of the TGF-β pathway in neuroblastoma.

Pieter Mestdagh; Anna-Karin Boström; Francis Impens; Erik Fredlund; Gert Van Peer; Pasqualino De Antonellis; Kristoffer von Stedingk; Bart Ghesquière; Stefanie Schulte; Michael Dews; Andrei Thomas-Tikhonenko; Johannes H. Schulte; Massimo Zollo; Alexander Schramm; Kris Gevaert; Håkan Axelson; Franki Speleman; Jo Vandesompele

The miR-17-92 microRNA cluster is often activated in cancer cells, but the identity of its targets remains elusive. Using SILAC and quantitative mass spectrometry, we examined the effects of activation of the miR-17-92 cluster on global protein expression in neuroblastoma (NB) cells. Our results reveal cooperation between individual miR-17-92 miRNAs and implicate miR-17-92 in multiple hallmarks of cancer, including proliferation and cell adhesion. Most importantly, we show that miR-17-92 is a potent inhibitor of TGF-β signaling. By functioning both upstream and downstream of pSMAD2, miR-17-92 activation triggers downregulation of multiple key effectors along the TGF-β signaling cascade as well as direct inhibition of TGF-β-responsive genes.


Molecular and Cellular Biology | 2004

Direct repression of FLIP expression by c-myc is a major determinant of TRAIL sensitivity

M. Stacey Ricci; Zhaoyu Jin; Michael Dews; Duonan Yu; Andrei Thomas-Tikhonenko; David T. Dicker; Wafik S. El-Deiry

ABSTRACT Tumor necrosis factor alpha (TNF-α)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF-α family of death receptor ligands and holds great therapeutic potential as a tumor cell-specific cytotoxic agent. Using a panel of established tumor cell lines and normal cells, we found a significant difference between the number of TRAIL-sensitive cells expressing high levels of c-myc and TRAIL-resistant cells expressing low levels of c-myc (P < 0.05, n = 19). We also found a direct linear correlation between c-myc levels and TRAIL sensitivity in TRAIL-sensitive cell lines (r = 0.94, n = 6). Overexpression of c-myc or activation of a myc-estrogen receptor (ER) fusion sensitized TRAIL-resistant cells to TRAIL. Conversely, small interfering RNA (siRNA)-mediated knockdown of c-myc significantly reduced both c-myc expression and TRAIL-induced apoptosis. The gene encoding the inhibitor of caspase activation, FLICE inhibitory protein (FLIP), appears to be a direct target of c-myc-mediated transcriptional repression. Overexpression of c-myc or activation of myc-estrogen receptor (ER) decreased FLIP levels both in cell culture and in mouse models of c-myc-induced tumorigenesis, while knocking down c-myc using siRNA increased FLIP expression. Chromatin immunoprecipitation and luciferase reporter analyses showed that c-myc binds and represses the human FLIP promoter. c-myc expression enhanced TRAIL-induced caspase 8 cleavage and FLIP cleavage at the death-inducing signaling complex. Combined siRNA-mediated knockdown of FLIP and c-myc resensitized cells to TRAIL. Therefore, c-myc down-regulation of FLIP expression provides a universal mechanism to explain the ability of c-myc to sensitize cells to death receptor stimuli. In addition, identification of c-myc as a major determinant of TRAIL sensitivity provides a potentially important screening tool for identification of TRAIL-sensitive tumors.


Cancer Discovery | 2015

Convergence of Acquired Mutations and Alternative Splicing of CD19 Enables Resistance to CART-19 Immunotherapy

Elena Sotillo; David M. Barrett; Kathryn L. Black; Asen Bagashev; Derek A. Oldridge; Glendon Wu; Robyn T. Sussman; Claudia Lanauze; Marco Ruella; Matthew R. Gazzara; Nicole M. Martinez; Colleen T. Harrington; Elaine Y. Chung; Jessica Perazzelli; Ted J. Hofmann; Shannon L. Maude; Pichai Raman; Alejandro Barrera; Saar Gill; Simon F. Lacey; J. Joseph Melenhorst; David Allman; Elad Jacoby; Terry J. Fry; Crystal L. Mackall; Yoseph Barash; Kristen W. Lynch; John M. Maris; Stephan A. Grupp; Andrei Thomas-Tikhonenko

UNLABELLEDnThe CD19 antigen, expressed on most B-cell acute lymphoblastic leukemias (B-ALL), can be targeted with chimeric antigen receptor-armed T cells (CART-19), but relapses with epitope loss occur in 10% to 20% of pediatric responders. We detected hemizygous deletions spanning the CD19 locus and de novo frameshift and missense mutations in exon 2 of CD19 in some relapse samples. However, we also discovered alternatively spliced CD19 mRNA species, including one lacking exon 2. Pull-down/siRNA experiments identified SRSF3 as a splicing factor involved in exon 2 retention, and its levels were lower in relapsed B-ALL. Using genome editing, we demonstrated that exon 2 skipping bypasses exon 2 mutations in B-ALL cells and allows expression of the N-terminally truncated CD19 variant, which fails to trigger killing by CART-19 but partly rescues defects associated with CD19 loss. Thus, this mechanism of resistance is based on a combination of deleterious mutations and ensuing selection for alternatively spliced RNA isoforms.nnnSIGNIFICANCEnCART-19 yield 70% response rates in patients with B-ALL, but also produce escape variants. We discovered that the underlying mechanism is the selection for preexisting alternatively spliced CD19 isoforms with the compromised CART-19 epitope. This mechanism suggests a possibility of targeting alternative CD19 ectodomains, which could improve survival of patients with B-cell neoplasms.


Journal of Clinical Investigation | 2012

ER stress–mediated autophagy promotes Myc-dependent transformation and tumor growth

Lori S. Hart; John T. Cunningham; Tatini Datta; Souvik Dey; Feven Tameire; Stacey L. Lehman; Bo Qiu; Haiyan Zhang; George J. Cerniglia; Meixia Bi; Yan Li; Yan Gao; Huayi Liu; Changhong Li; Amit Maity; Andrei Thomas-Tikhonenko; Alexander E. Perl; Albert C. Koong; Serge Y. Fuchs; J. Alan Diehl; Ian G. Mills; Davide Ruggero; Constantinos Koumenis

The proto-oncogene c-Myc paradoxically activates both proliferation and apoptosis. In the pathogenic state, c-Myc-induced apoptosis is bypassed via a critical, yet poorly understood escape mechanism that promotes cellular transformation and tumorigenesis. The accumulation of unfolded proteins in the ER initiates a cellular stress program termed the unfolded protein response (UPR) to support cell survival. Analysis of spontaneous mouse and human lymphomas demonstrated significantly higher levels of UPR activation compared with normal tissues. Using multiple genetic models, we demonstrated that c-Myc and N-Myc activated the PERK/eIF2α/ATF4 arm of the UPR, leading to increased cell survival via the induction of cytoprotective autophagy. Inhibition of PERK significantly reduced Myc-induced autophagy, colony formation, and tumor formation. Moreover, pharmacologic or genetic inhibition of autophagy resulted in increased Myc-dependent apoptosis. Mechanistically, we demonstrated an important link between Myc-dependent increases in protein synthesis and UPR activation. Specifically, by employing a mouse minute (L24+/-) mutant, which resulted in wild-type levels of protein synthesis and attenuation of Myc-induced lymphomagenesis, we showed that Myc-induced UPR activation was reversed. Our findings establish a role for UPR as an enhancer of c-Myc-induced transformation and suggest that UPR inhibition may be particularly effective against malignancies characterized by c-Myc overexpression.


Cancer Research | 2010

The Myc–miR-17∼92 Axis Blunts TGFβ Signaling and Production of Multiple TGFβ-Dependent Antiangiogenic Factors

Michael Dews; Jamie L. Fox; Stacy Hultine; Prema Sundaram; Wenge Wang; Yingqiu Y. Liu; Emma E. Furth; Gregory H. Enders; Wafik S. El-Deiry; Janell M. Schelter; Michele A. Cleary; Andrei Thomas-Tikhonenko

c-Myc stimulates angiogenesis in tumors through mechanisms that remain incompletely understood. Recent work indicates that c-Myc upregulates the miR-17∼92 microRNA cluster and downregulates the angiogenesis inhibitor thrombospondin-1, along with other members of the thrombospondin type 1 repeat superfamily. Here, we show that downregulation of the thrombospondin type 1 repeat protein clusterin in cells overexpressing c-Myc and miR-17∼92 promotes angiogenesis and tumor growth. However, clusterin downregulation by miR-17∼92 is indirect. It occurs as a result of reduced transforming growth factor-β (TGFβ) signaling caused by targeting of several regulatory components in this signaling pathway. Specifically, miR-17-5p and miR-20 reduce the expression of the type II TGFβ receptor and miR-18 limits the expression of Smad4. Supporting these results, in human cancer cell lines, levels of the miR-17∼92 primary transcript MIR17HG negatively correlate with those of many TGFβ-induced genes that are not direct targets of miR-17∼92 (e.g., clusterin and angiopoietin-like 4). Furthermore, enforced expression of miR-17∼92 in MIR17HG(low) cell lines (e.g., glioblastoma) results in impaired gene activation by TGFβ. Together, our results define a pathway in which c-Myc activation of miR-17∼92 attenuates the TGFβ signaling pathway to shut down clusterin expression, thereby stimulating angiogenesis and tumor cell growth.


Molecular and Cellular Biology | 2006

Activation of Transferrin Receptor 1 by c-Myc Enhances Cellular Proliferation and Tumorigenesis

Kathryn A. O'Donnell; Duonan Yu; Karen I. Zeller; Jung Whan Kim; Frederick Racke; Andrei Thomas-Tikhonenko; Chi V. Dang

ABSTRACT Overexpression of transferrin receptor 1 (TFRC1), a major mediator of iron uptake in mammalian cells, is a common feature of human malignancies. Therapeutic strategies designed to interfere with tumor iron metabolism have targeted TFRC1. The c-Myc oncogenic transcription factor stimulates proliferation and growth by activating thousands of target genes. Here we demonstrate that TFRC1 is a critical downstream target of c-Myc. Using in vitro and in vivo models of B-cell lymphoma, we show that TFRC1 expression is activated by c-Myc. Chromatin immunoprecipitation experiments reveal that c-Myc directly binds a conserved region of TFRC1. In light of these findings, we sought to determine whether TFRC1 is required for c-Myc-mediated cellular proliferation and cell size control. TFRC1 inhibition decreases cellular proliferation and results in G1 arrest without affecting cell size. Consistent with these findings, expression profiling reveals that TFRC1 depletion alters expression of genes that regulate the cell cycle. Furthermore, enforced TFRC1 expression confers a growth advantage to cells and significantly enhances the rate of c-Myc-mediated tumor formation in vivo. These findings provide a molecular basis for increased TFRC1 expression in human tumors, illuminate the role of TFRC1 in the c-Myc target gene network, and support strategies that target TFRC1 for cancer therapy.


Nature Immunology | 2004

B cell–specific loss of histone 3 lysine 9 methylation in the V H locus depends on Pax5

Kristen Johnson; David L. Pflugh; Duonan Yu; David G.T. Hesslein; Kuo-I Lin; Alfred L. M. Bothwell; Andrei Thomas-Tikhonenko; David G. Schatz; Kathryn Calame

Immunoglobulin heavy chain rearrangement (VH-to-DJH) occurs only in B cells, suggesting it is inhibited in other lineages. Here we found that in the mouse VH locus, methylation of lysine 9 on histone H3 (H3-K9), a mark of inactive chromatin, was present in non–B lineage cells but was absent in B cells. As others have shown that H3-K9 methylation can inhibit V(D)J recombination on engineered substrates, our data support the idea that H3-K9 methylation inhibits endogenous VH-to-DJH recombination. We also show that Pax5, a transcription factor required for B cell commitment, is necessary and sufficient for the removal of H3-K9 methylation in the VH locus and provide evidence that one function of Pax5 is to remove this inhibitory modification by a mechanism of histone exchange, thus allowing B cell–specific VH-to-DJH recombination.

Collaboration


Dive into the Andrei Thomas-Tikhonenko's collaboration.

Top Co-Authors

Avatar

Duonan Yu

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Michael Dews

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Elena Sotillo

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Diana Cozma

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Elaine Y. Chung

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Kathryn L. Black

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Elena Sotillo-Piñeiro

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Joshua T. Mendell

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge