Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrei V. Bandura is active.

Publication


Featured researches published by Andrei V. Bandura.


Journal of Physical and Chemical Reference Data | 2006

The Ionization Constant of Water over Wide Ranges of Temperature and Density

Andrei V. Bandura; Serguei N. Lvov

A semitheoretical approach for the ionization constant of water, KW, is used to fit the available experimental data over wide ranges of density and temperature. Statistical thermodynamics is employed to formulate a number of contributions to the standard state chemical potential of the ionic hydration process. A sorption model is developed for calculating the inner-shell term, which accounts for the ion–water interactions in the immediate ion vicinity. A new analytical expression is derived using the Bragg–Williams approximation that reproduces the dependence of a mean ion solvation number on the solvent chemical potential. The proposed model was found to be correct at the zero-density limit. The final formulation has a simple analytical form, includes seven adjustable parameters, and provides good fitting of the collected KW data, within experimental uncertainties, for a temperature range of 0–800 °C and densities of 0–1.2 g cm−3.


Langmuir | 2008

Surface protonation at the rutile (110) interface: explicit incorporation of solvation structure within the refined MUSIC model framework.

Michael L. Machesky; M. Predota; David J. Wesolowski; Lukas Vlcek; Peter T. Cummings; J. Rosenqvist; Moira K. Ridley; James D. Kubicki; Andrei V. Bandura; Nitin Kumar; Jorge O. Sofo

The detailed solvation structure at the (110) surface of rutile (alpha-TiO2) in contact with bulk liquid water has been obtained primarily from experimentally verified classical molecular dynamics (CMD) simulations of the ab initio-optimized surface in contact with SPC/E water. The results are used to explicitly quantify H-bonding interactions, which are then used within the refined MUSIC model framework to predict surface oxygen protonation constants. Quantum mechanical molecular dynamics (QMD) simulations in the presence of freely dissociable water molecules produced H-bond distributions around deprotonated surface oxygens very similar to those obtained by CMD with nondissociable SPC/E water, thereby confirming that the less computationally intensive CMD simulations provide accurate H-bond information. Utilizing this H-bond information within the refined MUSIC model, along with manually adjusted Ti-O surface bond lengths that are nonetheless within 0.05 A of those obtained from static density functional theory (DFT) calculations and measured in X-ray reflectivity experiments (as well as bulk crystal values), give surface protonation constants that result in a calculated zero net proton charge pH value (pHznpc) at 25 degrees C that agrees quantitatively with the experimentally determined value (5.4+/-0.2) for a specific rutile powder dominated by the (110) crystal face. Moreover, the predicted pHznpc values agree to within 0.1 pH unit with those measured at all temperatures between 10 and 250 degrees C. A slightly smaller manual adjustment of the DFT-derived Ti-O surface bond lengths was sufficient to bring the predicted pHznpcvalue of the rutile (110) surface at 25 degrees C into quantitative agreement with the experimental value (4.8+/-0.3) obtained from a polished and annealed rutile (110) single crystal surface in contact with dilute sodium nitrate solutions using second harmonic generation (SHG) intensity measurements as a function of ionic strength. Additionally, the H-bond interactions between protolyzable surface oxygen groups and water were found to be stronger than those between bulk water molecules at all temperatures investigated in our CMD simulations (25, 150 and 250 degrees C). Comparison with the protonation scheme previously determined for the (110) surface of isostructural cassiterite (alpha-SnO2) reveals that the greater extent of H-bonding on the latter surface, and in particular between water and the terminal hydroxyl group (Sn-OH) results in the predicted protonation constant for that group being lower than for the bridged oxygen (Sn-O-Sn), while the reverse is true for the rutile (110) surface. These results demonstrate the importance of H-bond structure in dictating surface protonation behavior, and that explicit use of this solvation structure within the refined MUSIC model framework results in predicted surface protonation constants that are also consistent with a variety of other experimental and computational data.


Journal of Physical Chemistry B | 2008

Comparisons of multilayer H2O adsorption onto the (110) surfaces of alpha-TiO2 and SnO2 as calculated with density functional theory.

Andrei V. Bandura; James D. Kubicki; Jorge O. Sofo

Mono- and bilayer adsorption of H2O molecules on TiO2 and SnO 2 (110) surfaces has been investigated using static planewave density functional theory (PW DFT) simulations. Potential energies and structures were calculated for the associative, mixed, and dissociative adsorption states. The DOS of the bare and hydrated surfaces has been used for the analysis of the difference between the H2O interaction with TiO2 and SnO 2 surfaces. The important role of the bridging oxygen in the H2O dissociation process is discussed. The influence of the second layer of H2O molecules on relaxation of the surface atoms was estimated.


Journal of Computational Chemistry | 2008

A first‐principles DFT study of UN bulk and (001) surface: Comparative LCAO and PW calculations

R. A. Evarestov; Andrei V. Bandura; M. V. Losev; E. A. Kotomin; Yu. F. Zhukovskii; Dmitry Bocharov

LCAO and PW DFT calculations of the lattice constant, bulk modulus, cohesive energy, charge distribution, band structure, and DOS for UN single crystal are analyzed. It is demonstrated that a choice of the uranium atom relativistic effective core potentials considerably affects the band structure and magnetic structure at low temperatures. All calculations indicate mixed metallic‐covalent chemical bonding in UN crystal with U5f states near the Fermi level. On the basis of the experience accumulated in UN bulk simulations, we compare the atomic and electronic structure as well as the formation energy for UN(001) surface calculated on slabs of different thickness using both DFT approaches.


Journal of Computational Chemistry | 2012

First‐principles calculations on the four phases of BaTiO3

R. A. Evarestov; Andrei V. Bandura

The calculations based on linear combination of atomic orbitals basis functions as implemented in CRYSTAL09 computer code have been performed for cubic, tetragonal, orthorhombic, and rhombohedral modifications of BaTiO3 crystal. Structural and electronic properties as well as phonon frequencies were obtained using local density approximation, generalized gradient approximation, and hybrid exchange‐correlation density functional theory (DFT) functionals for four stable phases of BaTiO3. A comparison was made between the results of different DFT techniques. It is concluded that the hybrid PBE0 [J. P. Perdew, K. Burke, M. Ernzerhof, J. Chem. Phys. 1996, 105, 9982.] functional is able to predict correctly the structural stability and phonon properties both for cubic and ferroelectric phases of BaTiO3. The comparative phonon symmetry analysis in BaTiO3 four phases has been made basing on the site symmetry and irreducible representation indexes for the first time.


Journal of Chemical Physics | 2011

Faster proton transfer dynamics of water on SnO2 compared to TiO2.

Nitin Kumar; Paul R. C. Kent; Andrei V. Bandura; James D. Kubicki; David J. Wesolowski; David R. Cole; Jorge O. Sofo

Proton jump processes in the hydration layer on the iso-structural TiO(2) rutile (110) and SnO(2) cassiterite (110) surfaces were studied with density functional theory molecular dynamics. We find that the proton jump rate is more than three times faster on cassiterite compared with rutile. A local analysis based on the correlation between the stretching band of the O-H vibrations and the strength of H-bonds indicates that the faster proton jump activity on cassiterite is produced by a stronger H-bond formation between the surface and the hydration layer above the surface. The origin of the increased H-bond strength on cassiterite is a combined effect of stronger covalent bonding and stronger electrostatic interactions due to differences of its electronic structure. The bridging oxygens form the strongest H-bonds between the surface and the hydration layer. This higher proton jump rate is likely to affect reactivity and catalytic activity on the surface. A better understanding of its origins will enable methods to control these rates.


Chemical Geology | 2000

Reference systems for assessing viability and accuracy of pH sensors in high temperature subcritical and supercritical aqueous solutions

Serguei N. Lvov; Xiangyang Zhou; S.M. Ulyanov; Andrei V. Bandura

Abstract This paper describes an effort in developing reference systems to be used in high temperature subcritical and supercritical aqueous solutions for assessing the viability and accuracy of high-temperature pH sensors. Each of these reference systems consists of a couple of three-component aqueous solutions in which the concentration of NaCl is greater than the concentration of another solute, such as HCl and NaOH. The viability of the reference systems was tested using the recently published experimental data employing a flow-through electrochemical cell at temperatures from 25°C to 400°C and densities from 0.17 to 1 g cm −3 [S.N. Lvov, X.Y. Zhou, and A.V. Bandura, 1999a, Estimation of Isothermal Potential for HCl/NaCl and NaOH/NaCl Systems in High Temperatures Supercritical Aqueous Solutions, J. Supercrit. Fluids, in preparation; S.N. Lvov, X.Y. Zhou, and D.D. Macdonald, 1999, Flow-Through Electrochemical Cell for Accurate pH Measurements at Temperature up to 400°C, J. Electroanal. Chem., 463, 146–156]. The applicability of the method was tested for dilute (0.01 and 0.001 mol kg −1 ) HCl aqueous solutions having background NaCl electrolyte in the amount of 0.1 mol kg −1 . The most significant property of the reference systems is that the pH difference, and hence, the cell potential, can easily be estimated with sufficient accuracy using only the analytical concentrations of the electrolytes without considering the speciation calculations, given the fact that the association and dissociation constants at supercritical temperatures have not been accurately determined yet.


Langmuir | 2011

Comparison of cation adsorption by isostructural rutile and cassiterite.

Michael L. Machesky; David J. Wesolowski; Jörgen Rosenqvist; Milan Předota; Lukas Vlcek; Moira K. Ridley; Vaibhav Kohli; Zhan Zhang; Paul Fenter; Peter T. Cummings; Serguei N. Lvov; Mark Fedkin; Victor Rodriguez-Santiago; James D. Kubicki; Andrei V. Bandura

Macroscopic net proton charging curves for powdered rutile and cassiterite specimens with the (110) crystal face predominant, as a function of pH in RbCl and NaCl solutions, trace SrCl(2) in NaCl, and trace ZnCl(2) in NaCl and Na Triflate solutions, are compared to corresponding molecular-level information obtained from static DFT optimizations and classical MD simulations, as well as synchrotron X-ray methods. The similarities and differences in the macroscopic charging behavior of rutile and cassiterite largely reflect the cation binding modes observed at the molecular level. Cation adsorption is primarily inner-sphere on both isostructural (110) surfaces, despite predictions that outer-sphere binding should predominate on low bulk dielectric constant oxides such as cassiterite (ε(bulk) ≈ 11). Inner-sphere adsorption is also significant for Rb(+) and Na(+) on neutral surfaces, whereas Cl(-) binding is predominately outer-sphere. As negative surface charge increases, relatively more Rb(+), Na(+), and especially Sr(2+) are bound in highly desolvated tetradentate fashion on the rutile (110) surface, largely accounting for enhanced negative charge development relative to cassiterite. Charging curves in the presence of Zn(2+) are very steep but similar for both oxides, reflective of Zn(2+) hydrolysis (and accompanying proton release) during the adsorption process, and the similar binding modes for ZnOH(+) on both surfaces. These results suggest that differences in cation adsorption between high and low bulk dielectric constant oxides are more subtly related to the relative degree of cation desolvation accompanying inner-sphere binding (i.e., more tetradentate binding on rutile), rather than distinct inner- and outer-sphere adsorption modes. Cation desolvation may be favored at the rutile (110) surface in part because inner-sphere water molecules are bound further from and less tightly than on the cassiterite (110) surface. Hence, their removal upon inner-sphere cation binding is relatively more favorable.


Journal of Physics: Conference Series | 2007

The water adsorption on the surfaces of SrMO3 (M= Ti, Zr, and Hf) crystalline oxides: quantum and classical modelling

R. A. Evarestov; Andrei V. Bandura; E.N. Blokhin

Hybrid HF-DFT LCAO simulations of (001) surface properties and water adsorption on cubic SrTiO3, SrZrO3, and SrHfO3 perovskites are performed in a single-slab model framework. The optimized atomic structures and water adsorption energies have been calculated for a single water molecule per the surface unit cell. The possibility of the water molecular dissociation was investigated. Basing on the experimental data and results of the ab initio calculations the new interatomic potentials have been developed to describe the bulk and surface properties of the binary and ternary titanium and zirconium oxides. The proposed force-field takes into account the polarization effects via the shell model. The force-field suggested was used in the molecular mechanics calculations with the extended unit cells to study the possible surface reconstruction upon relaxation and hydroxylation of cubic perovskites.


Central European Journal of Physics | 2011

Symmetry and models of single-walled TiO2 nanotubes with rectangular morphology

R. A. Evarestov; Yuri F. Zhukovskii; Andrei V. Bandura; Sergei Piskunov

The formalism of line symmetry groups for one-periodic (1D) nanostructures with rotohelical symmetry has been applied for symmetry analysis of single-walled titania nanotubes (SW TiO2 NTs) formed by rolling up the stoichiometric two-periodic (2D) slabs of anatase structure. Either six- or twelve-layer (101) slabs have been cut from TiO2 crystal in a stable anatase phase. After structural optimization, the latter keeps the centered rectangular symmetry of initial slab slightly compressed along a direction coincided with large sides of elemental rectangles. We have considered two sets of SW TiO2 NTs with optimized six- and twelve-layer structures, which possess chiralities (−n, n) and (n, n) of anatase nanotubes. To analyze the structural and electronic properties of titania slabs and nanotubes, we have performed their ab initio LCAO calculations, using the hybrid Hartree-Fock/Kohn-Sham exchange-correlation functional PBE0. The band gaps (Δɛgap) and strain energies (Estrain) of six-layer nanotubes have been computed and analyzed as functions of NT diameter (DNT). As to models of 12-layer SW TiO2 NTs of both chiralities, their optimization results in structural exfoliation, i.e., the multi-walled structure should be rather formed in nanotubes with such a number of atomic layers.

Collaboration


Dive into the Andrei V. Bandura's collaboration.

Top Co-Authors

Avatar

R. A. Evarestov

Saint Petersburg State University

View shared research outputs
Top Co-Authors

Avatar

James D. Kubicki

University of Texas at El Paso

View shared research outputs
Top Co-Authors

Avatar

David J. Wesolowski

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jorge O. Sofo

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Vitaly V. Porsev

Saint Petersburg State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul R. C. Kent

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Sergey I. Lukyanov

Saint Petersburg State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Serguei N. Lvov

Pennsylvania State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge