Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andréia Carvalho Alzamora is active.

Publication


Featured researches published by Andréia Carvalho Alzamora.


Circulation Research | 2013

Discovery and Characterization of Alamandine, a Novel Component of the Renin-Angiotensin System

Roberto Queiroga Lautner; Daniel C. Villela; R. A. Fraga-Silva; Neiva Silva; Thiago Verano-Braga; Fabiana P. Costa-Fraga; Joachim Jankowski; Vera Jankowski; Frederico B. De Sousa; Andréia Carvalho Alzamora; Everton Soares; Claudiane Barbosa; Frank Kjeldsen; Aline de Oliveira; Janaina F Braga; Silvia Quintao Savergnini; Gisele Maia; Antonio Bastos Peluso; Danielle Passos-Silva; Anderson J. Ferreira; Fabiana Alves; Almir S. Martins; Mohan K. Raizada; Renata Cristina de Paula; Daisy Motta-Santos; Friederike Kemplin; Adriano M.C. Pimenta; Natalia Alenina; Rubén D. Sinisterra; Michael Bader

Rationale: The renin–angiotensin system (RAS) is a key regulator of the cardiovascular system, electrolyte, and water balance. Here, we report identification and characterization of alamandine, a new heptapeptide generated by catalytic action of angiotensin-converting enzyme-2 angiotensin A or directly from angiotensin-(1–7).nnObjective: To characterize a novel component of the RAS, alamandine.nnMethods and Results: Using mass spectrometry we observed that alamandine circulates in human blood and can be formed from angiotensin-(1–7) in the heart. Alamandine produces several physiological actions that resemble those produced by angiotensin-(1–7), including vasodilation, antifibrosis, antihypertensive, and central effects. Interestingly, our data reveal that its actions are independent of the known vasodilator receptors of the RAS, Mas, and angiotensin II type 2 receptor. Rather, we demonstrate that alamandine acts through the Mas-related G-protein–coupled receptor, member D. Binding of alamandine to Mas-related G-protein–coupled receptor, member D is blocked by D-Pro7-angiotensin-(1–7), the Mas-related G-protein–coupled receptor, member D ligand β-alanine and PD123319, but not by the Mas antagonist A-779. In addition, oral administration of an inclusion compound of alamandine/β-hydroxypropyl cyclodextrin produced a long-term antihypertensive effect in spontaneously hypertensive rats and antifibrotic effects in isoproterenol-treated rats. Alamandine had no noticeable proliferative or antiproliferative effect in human tumoral cell lines.nnConclusions: The identification of these 2 novel components of the RAS, alamandine and its receptor, provides new insights for the understanding of the physiological and pathophysiological role of the RAS and may help to develop new therapeutic strategies for treating human cardiovascular diseases and other related disorders.nn# Novelty and Significance {#article-title-32}Rationale: The renin–angiotensin system (RAS) is a key regulator of the cardiovascular system, electrolyte, and water balance. Here, we report identification and characterization of alamandine, a new heptapeptide generated by catalytic action of angiotensin-converting enzyme-2 angiotensin A or directly from angiotensin-(1–7). Objective: To characterize a novel component of the RAS, alamandine. Methods and Results: Using mass spectrometry we observed that alamandine circulates in human blood and can be formed from angiotensin-(1–7) in the heart. Alamandine produces several physiological actions that resemble those produced by angiotensin-(1–7), including vasodilation, antifibrosis, antihypertensive, and central effects. Interestingly, our data reveal that its actions are independent of the known vasodilator receptors of the RAS, Mas, and angiotensin II type 2 receptor. Rather, we demonstrate that alamandine acts through the Mas-related G-protein–coupled receptor, member D. Binding of alamandine to Mas-related G-protein–coupled receptor, member D is blocked by D-Pro7-angiotensin-(1–7), the Mas-related G-protein–coupled receptor, member D ligand &bgr;-alanine and PD123319, but not by the Mas antagonist A-779. In addition, oral administration of an inclusion compound of alamandine/&bgr;-hydroxypropyl cyclodextrin produced a long-term antihypertensive effect in spontaneously hypertensive rats and antifibrotic effects in isoproterenol-treated rats. Alamandine had no noticeable proliferative or antiproliferative effect in human tumoral cell lines. Conclusions: The identification of these 2 novel components of the RAS, alamandine and its receptor, provides new insights for the understanding of the physiological and pathophysiological role of the RAS and may help to develop new therapeutic strategies for treating human cardiovascular diseases and other related disorders.


Scientific Reports | 2017

Oxidative stress causes hypertension and activation of nuclear factor-κB after high-fructose and salt treatments

Waleska Claudia Amaral Dornas; Leonardo M. Cardoso; Maísa Silva; Natália L. S. Machado; A Deoclécio Chianca-Jr.; Andréia Carvalho Alzamora; Wanderson Geraldo de Lima; V. Lagente; Marcelo Eustáquio Silva

There is evidence that diets rich in salt or simple sugars as fructose are associated with abnormalities in blood pressure regulation. However, the mechanisms underlying pathogenesis of salt- and fructose-induced kidney damage and/or consequent hypertension yet remain largely unexplored. Here, we tested the role of oxidative state as an essential factor along with high salt and fructose treatment in causing hypertension. Fischer male rats were supplemented with a high-fructose diet (20% in water) for 20 weeks and maintained on high-salt diet (8%) associate in the last 10 weeks. Fructose-fed rats exhibited a salt-dependent hypertension accompanied by decrease in renal superoxide dismutase activity, which is the first footprint of antioxidant inactivation by reactive oxygen species (ROS). Metabolic changes and the hypertensive effect of the combined fructose-salt diet (20 weeks) were markedly reversed by a superoxide scavenger, Tempol (10u2009mg/kg, gavage); moreover, Tempol (50u2009mM) potentially reduced ROS production and abolished nuclear factor-kappa B (NF-κB) activation in human embryonic kidney HEK293 cells incubated with L-fructose (30u2009mM) and NaCl (500 mosmol/kg added). Taken together, our data suggested a possible role of oxygen radicals and ROS-induced activation of NF-κB in the fructose- and salt-induced hypertension associated with the progression of the renal disease.


Physiological Reviews | 2018

The ACE2/Angiotensin-(1–7)/MAS Axis of the Renin-Angiotensin System: Focus on Angiotensin-(1–7)

Robson A.S. Santos; Walkyria O. Sampaio; Andréia Carvalho Alzamora; Daisy Motta-Santos; Natalia Alenina; Michael Bader; Maria José Campagnole-Santos

The renin-angiotensin system (RAS) is a key player in the control of the cardiovascular system and hydroelectrolyte balance, with an influence on organs and functions throughout the body. The classical view of this system saw it as a sequence of many enzymatic steps that culminate in the production of a single biologically active metabolite, the octapeptide angiotensin (ANG) II, by the angiotensin converting enzyme (ACE). The past two decades have revealed new functions for some of the intermediate products, beyond their roles as substrates along the classical route. They may be processed in alternative ways by enzymes such as the ACE homolog ACE2. One effect is to establish a second axis through ACE2/ANG-(1–7)/MAS, whose end point is the metabolite ANG-(1–7). ACE2 and other enzymes can form ANG-(1–7) directly or indirectly from either the decapeptide ANG I or from ANG II. In many cases, this second axis appears to counteract or modulate the effects of the classical axis. ANG-(1–7) itself acts on the receptor MAS to influence a range of mechanisms in the heart, kidney, brain, and other tissues. This review highlights the current knowledge about the roles of ANG-(1–7) in physiology and disease, with particular emphasis on the brain.


Scientific Reports | 2017

Chronic high-sodium diet intake after weaning lead to neurogenic hypertension in adult Wistar rats

Paula Magalhães Gomes; Renato Willian Martins Sá; Giovana Lopes Aguiar; Milede Hanner Saraiva Paes; Andréia Carvalho Alzamora; Wanderson Geraldo de Lima; Lisandra Brandino de Oliveira; Sean D. Stocker; Vagner R. Antunes; Leonardo M. Cardoso

In this study, we investigated some mechanisms involved in sodium-dependent hypertension of rats exposed to chronic salt (NaCl) intake from weaning until adult age. Weaned male Wistar rats were placed under high (0.90%u2009w/w, HS) or regular (0.27%u2009w/w, Cont) sodium diets for 12 weeks. Water consumption, urine output and sodium excretion were higher in HS rats compared to control. Blood pressure (BP) was directly measured by the arterial catheter and found 13.8% higher in HS vs Cont rats. Ganglionic blockade with hexamethonium caused greater fall in the BP of HS rats (33%), and central antagonism of AT1 receptors (losartan) microinjected into the lateral ventricle reduced BP level of HS, but not of Cont group. Heart rate variability analysis revealed sympathetic prevalence on modulation of the systolic interval. HS diet did not affect creatinine clearance. Kidney histological analysis revealed no significant change in renal corpuscle structure. Sodium and potassium concentrations in CSF were found higher in HS rats despite no change in plasma concentration of these ions. Taken together, data suggest that animals exposed to chronic salt intake to a level close to that reported for human’ diet since weaning lead to hypertension, which appears to rely on sodium-driven neurogenic mechanisms.


Animal Biology | 2014

Functional morphology of the esophagus of the tropical house gecko Hemidactylus mabouia(Squamata: Gekkonidae)

Nádia Lúcia Totou; Renato Willian Martins Sá; Andréia Carvalho Alzamora; Leonardo M. Cardoso; Lenice Kappes Becker Oliveira

Totou NL, Sá RWM, Alzamora AC, Cardoso LM, Becker LK. Cardiopulmonary Reflex and Blood Pressure Response after Swimming and Treadmill Exercise in Hypertensive Rats. JEPonline 2015;18(5):86-95. Cardiopulmonary sensitivity was evaluated after exercise training through swimming and running in spontaneously hypertensive rats (SHR) that were divided into three groups: (a) run exercise; (b) swim exercise; and (c) sedentary. For 8 wks, the run exercise was performed on a treadmill while the swim exercise was performed by swimming. Cardiopulmonary reflex was evaluated by chemical and mechanical pathways through the injections of phenylbiguanide (PBG) (5.0 mg·kg-1) and volume expansion with isotonic saline (0.75% of body weight), respectively. Both types of exercise training decreased systolic blood pressure (SBP) compared to the sedentary group. The swim trained group reduced SBP faster than the run trained group. The sensitivity of the chemically activated endings of the cardiopulmonary reflex was increased in both exercise-trained groups for hypotensive response. The exercise training groups had higher levels of urine output after acute volume expansion. The production of urine showed that swimming and treadmill training were more efficient than the sedentary group. These results indicate that: (a) exercise improved cardiopulmonary reflex sensitivity; and (b) swim training led to a faster SBP reduction and a more sensitive reflex response to pressure stimuli.


Circulation Research | 2013

Discovery and Characterization of Alamandine

Roberto Queiroga Lautner; Daniel C. Villela; Rodrigo A. Fraga-Silva; Neiva Silva; Thiago Verano-Braga; Fabiana P. Costa-Fraga; Joachim Jankowski; Vera Jankowski; Frederico B. De Sousa; Andréia Carvalho Alzamora; Everton Soares; Claudiane Barbosa; Frank Kjeldsen; Aline A. Oliveira; Janaina F Braga; Silvia Savergnini; Gisele Maia; Antonio Bastos Peluso; Danielle Passos-Silva; Anderson J. Ferreira; Fabiana Alves; Almir S. Martins; Mohan K. Raizada; Renata Cristina de Paula; Daisy Motta-Santos; Friederike Kemplin; Adriano M.C. Pimenta; Natalia Alenina; Rubén D. Sinisterra; Michael Bader

Rationale: The renin–angiotensin system (RAS) is a key regulator of the cardiovascular system, electrolyte, and water balance. Here, we report identification and characterization of alamandine, a new heptapeptide generated by catalytic action of angiotensin-converting enzyme-2 angiotensin A or directly from angiotensin-(1–7).nnObjective: To characterize a novel component of the RAS, alamandine.nnMethods and Results: Using mass spectrometry we observed that alamandine circulates in human blood and can be formed from angiotensin-(1–7) in the heart. Alamandine produces several physiological actions that resemble those produced by angiotensin-(1–7), including vasodilation, antifibrosis, antihypertensive, and central effects. Interestingly, our data reveal that its actions are independent of the known vasodilator receptors of the RAS, Mas, and angiotensin II type 2 receptor. Rather, we demonstrate that alamandine acts through the Mas-related G-protein–coupled receptor, member D. Binding of alamandine to Mas-related G-protein–coupled receptor, member D is blocked by D-Pro7-angiotensin-(1–7), the Mas-related G-protein–coupled receptor, member D ligand β-alanine and PD123319, but not by the Mas antagonist A-779. In addition, oral administration of an inclusion compound of alamandine/β-hydroxypropyl cyclodextrin produced a long-term antihypertensive effect in spontaneously hypertensive rats and antifibrotic effects in isoproterenol-treated rats. Alamandine had no noticeable proliferative or antiproliferative effect in human tumoral cell lines.nnConclusions: The identification of these 2 novel components of the RAS, alamandine and its receptor, provides new insights for the understanding of the physiological and pathophysiological role of the RAS and may help to develop new therapeutic strategies for treating human cardiovascular diseases and other related disorders.nn# Novelty and Significance {#article-title-32}Rationale: The renin–angiotensin system (RAS) is a key regulator of the cardiovascular system, electrolyte, and water balance. Here, we report identification and characterization of alamandine, a new heptapeptide generated by catalytic action of angiotensin-converting enzyme-2 angiotensin A or directly from angiotensin-(1–7). Objective: To characterize a novel component of the RAS, alamandine. Methods and Results: Using mass spectrometry we observed that alamandine circulates in human blood and can be formed from angiotensin-(1–7) in the heart. Alamandine produces several physiological actions that resemble those produced by angiotensin-(1–7), including vasodilation, antifibrosis, antihypertensive, and central effects. Interestingly, our data reveal that its actions are independent of the known vasodilator receptors of the RAS, Mas, and angiotensin II type 2 receptor. Rather, we demonstrate that alamandine acts through the Mas-related G-protein–coupled receptor, member D. Binding of alamandine to Mas-related G-protein–coupled receptor, member D is blocked by D-Pro7-angiotensin-(1–7), the Mas-related G-protein–coupled receptor, member D ligand &bgr;-alanine and PD123319, but not by the Mas antagonist A-779. In addition, oral administration of an inclusion compound of alamandine/&bgr;-hydroxypropyl cyclodextrin produced a long-term antihypertensive effect in spontaneously hypertensive rats and antifibrotic effects in isoproterenol-treated rats. Alamandine had no noticeable proliferative or antiproliferative effect in human tumoral cell lines. Conclusions: The identification of these 2 novel components of the RAS, alamandine and its receptor, provides new insights for the understanding of the physiological and pathophysiological role of the RAS and may help to develop new therapeutic strategies for treating human cardiovascular diseases and other related disorders.


Experimental Physiology | 2017

Changes in cardiovascular responses to chemoreflex activation of rats recovered from protein restriction are not related to AT1 receptors

Renato Willian Martins Sá; Andréa Siqueira Haibara; Paula Magalhães Gomes; Giovana Lopes Aguiar; Rafael Souza Leopoldino Nascimento; Maria Lúcia Pedrosa; Andréia Carvalho Alzamora; Lisandra Brandino de Oliveira; Leonardo M. Cardoso

What is the central question of this study? In this study, we sought to investigate whether cardiovascular responses to peripheral chemoreflex activation of rats recovered from protein restriction are related to activation of AT1 receptors. What is the main finding and its importance? This study highlights the fact that angiotensinergic mechanisms activated by AT1 receptors do not support increased responses to peripheral chemoreflex activation by KCN in rats recovered from protein restriction. Also, we found that protein restriction led to increased resting ventilation in adult rats, even after recovery.


Circulation Research | 2013

Discovery and Characterization of AlamandineNovelty and Significance

Roberto Queiroga Lautner; Daniel C. Villela; Rodrigo A. Fraga-Silva; Neiva Silva; Thiago Verano-Braga; Fabiana P. Costa-Fraga; Joachim Jankowski; Vera Jankowski; Frederico B. De Sousa; Andréia Carvalho Alzamora; Everton Soares; Claudiane Barbosa; Frank Kjeldsen; Aline A. Oliveira; Janaina F Braga; Silvia Savergnini; Gisele Maia; Antonio Bastos Peluso; Danielle Passos-Silva; Anderson J. Ferreira; Fabiana Alves; Almir S. Martins; Mohan K. Raizada; Renata Cristina de Paula; Daisy Motta-Santos; Friederike Kemplin; Adriano M.C. Pimenta; Natalia Alenina; Rubén D. Sinisterra; Michael Bader

Rationale: The renin–angiotensin system (RAS) is a key regulator of the cardiovascular system, electrolyte, and water balance. Here, we report identification and characterization of alamandine, a new heptapeptide generated by catalytic action of angiotensin-converting enzyme-2 angiotensin A or directly from angiotensin-(1–7).nnObjective: To characterize a novel component of the RAS, alamandine.nnMethods and Results: Using mass spectrometry we observed that alamandine circulates in human blood and can be formed from angiotensin-(1–7) in the heart. Alamandine produces several physiological actions that resemble those produced by angiotensin-(1–7), including vasodilation, antifibrosis, antihypertensive, and central effects. Interestingly, our data reveal that its actions are independent of the known vasodilator receptors of the RAS, Mas, and angiotensin II type 2 receptor. Rather, we demonstrate that alamandine acts through the Mas-related G-protein–coupled receptor, member D. Binding of alamandine to Mas-related G-protein–coupled receptor, member D is blocked by D-Pro7-angiotensin-(1–7), the Mas-related G-protein–coupled receptor, member D ligand β-alanine and PD123319, but not by the Mas antagonist A-779. In addition, oral administration of an inclusion compound of alamandine/β-hydroxypropyl cyclodextrin produced a long-term antihypertensive effect in spontaneously hypertensive rats and antifibrotic effects in isoproterenol-treated rats. Alamandine had no noticeable proliferative or antiproliferative effect in human tumoral cell lines.nnConclusions: The identification of these 2 novel components of the RAS, alamandine and its receptor, provides new insights for the understanding of the physiological and pathophysiological role of the RAS and may help to develop new therapeutic strategies for treating human cardiovascular diseases and other related disorders.nn# Novelty and Significance {#article-title-32}Rationale: The renin–angiotensin system (RAS) is a key regulator of the cardiovascular system, electrolyte, and water balance. Here, we report identification and characterization of alamandine, a new heptapeptide generated by catalytic action of angiotensin-converting enzyme-2 angiotensin A or directly from angiotensin-(1–7). Objective: To characterize a novel component of the RAS, alamandine. Methods and Results: Using mass spectrometry we observed that alamandine circulates in human blood and can be formed from angiotensin-(1–7) in the heart. Alamandine produces several physiological actions that resemble those produced by angiotensin-(1–7), including vasodilation, antifibrosis, antihypertensive, and central effects. Interestingly, our data reveal that its actions are independent of the known vasodilator receptors of the RAS, Mas, and angiotensin II type 2 receptor. Rather, we demonstrate that alamandine acts through the Mas-related G-protein–coupled receptor, member D. Binding of alamandine to Mas-related G-protein–coupled receptor, member D is blocked by D-Pro7-angiotensin-(1–7), the Mas-related G-protein–coupled receptor, member D ligand &bgr;-alanine and PD123319, but not by the Mas antagonist A-779. In addition, oral administration of an inclusion compound of alamandine/&bgr;-hydroxypropyl cyclodextrin produced a long-term antihypertensive effect in spontaneously hypertensive rats and antifibrotic effects in isoproterenol-treated rats. Alamandine had no noticeable proliferative or antiproliferative effect in human tumoral cell lines. Conclusions: The identification of these 2 novel components of the RAS, alamandine and its receptor, provides new insights for the understanding of the physiological and pathophysiological role of the RAS and may help to develop new therapeutic strategies for treating human cardiovascular diseases and other related disorders.


Circulation Research | 2013

Discovery and Characterization of AlamandineNovelty and Significance: A Novel Component of the Renin–Angiotensin System

Roberto Queiroga Lautner; Daniel C. Villela; Rodrigo A. Fraga-Silva; Neiva Silva; Thiago Verano-Braga; Fabiana P. Costa-Fraga; Joachim Jankowski; Vera Jankowski; Frederico B. De Sousa; Andréia Carvalho Alzamora; Everton Soares; Claudiane Barbosa; Frank Kjeldsen; Aline A. Oliveira; Janaina F Braga; Silvia Savergnini; Gisele Maia; Antonio Bastos Peluso; Danielle Passos-Silva; Anderson J. Ferreira; Fabiana Alves; Almir S. Martins; Mohan K. Raizada; Renata Cristina de Paula; Daisy Motta-Santos; Friederike Kemplin; Adriano M.C. Pimenta; Natalia Alenina; Rubén D. Sinisterra; Michael Bader

Rationale: The renin–angiotensin system (RAS) is a key regulator of the cardiovascular system, electrolyte, and water balance. Here, we report identification and characterization of alamandine, a new heptapeptide generated by catalytic action of angiotensin-converting enzyme-2 angiotensin A or directly from angiotensin-(1–7).nnObjective: To characterize a novel component of the RAS, alamandine.nnMethods and Results: Using mass spectrometry we observed that alamandine circulates in human blood and can be formed from angiotensin-(1–7) in the heart. Alamandine produces several physiological actions that resemble those produced by angiotensin-(1–7), including vasodilation, antifibrosis, antihypertensive, and central effects. Interestingly, our data reveal that its actions are independent of the known vasodilator receptors of the RAS, Mas, and angiotensin II type 2 receptor. Rather, we demonstrate that alamandine acts through the Mas-related G-protein–coupled receptor, member D. Binding of alamandine to Mas-related G-protein–coupled receptor, member D is blocked by D-Pro7-angiotensin-(1–7), the Mas-related G-protein–coupled receptor, member D ligand β-alanine and PD123319, but not by the Mas antagonist A-779. In addition, oral administration of an inclusion compound of alamandine/β-hydroxypropyl cyclodextrin produced a long-term antihypertensive effect in spontaneously hypertensive rats and antifibrotic effects in isoproterenol-treated rats. Alamandine had no noticeable proliferative or antiproliferative effect in human tumoral cell lines.nnConclusions: The identification of these 2 novel components of the RAS, alamandine and its receptor, provides new insights for the understanding of the physiological and pathophysiological role of the RAS and may help to develop new therapeutic strategies for treating human cardiovascular diseases and other related disorders.nn# Novelty and Significance {#article-title-32}Rationale: The renin–angiotensin system (RAS) is a key regulator of the cardiovascular system, electrolyte, and water balance. Here, we report identification and characterization of alamandine, a new heptapeptide generated by catalytic action of angiotensin-converting enzyme-2 angiotensin A or directly from angiotensin-(1–7). Objective: To characterize a novel component of the RAS, alamandine. Methods and Results: Using mass spectrometry we observed that alamandine circulates in human blood and can be formed from angiotensin-(1–7) in the heart. Alamandine produces several physiological actions that resemble those produced by angiotensin-(1–7), including vasodilation, antifibrosis, antihypertensive, and central effects. Interestingly, our data reveal that its actions are independent of the known vasodilator receptors of the RAS, Mas, and angiotensin II type 2 receptor. Rather, we demonstrate that alamandine acts through the Mas-related G-protein–coupled receptor, member D. Binding of alamandine to Mas-related G-protein–coupled receptor, member D is blocked by D-Pro7-angiotensin-(1–7), the Mas-related G-protein–coupled receptor, member D ligand &bgr;-alanine and PD123319, but not by the Mas antagonist A-779. In addition, oral administration of an inclusion compound of alamandine/&bgr;-hydroxypropyl cyclodextrin produced a long-term antihypertensive effect in spontaneously hypertensive rats and antifibrotic effects in isoproterenol-treated rats. Alamandine had no noticeable proliferative or antiproliferative effect in human tumoral cell lines. Conclusions: The identification of these 2 novel components of the RAS, alamandine and its receptor, provides new insights for the understanding of the physiological and pathophysiological role of the RAS and may help to develop new therapeutic strategies for treating human cardiovascular diseases and other related disorders.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2006

Baroreflex modulation by angiotensins at the rat rostral and caudal ventrolateral medulla

Andréia Carvalho Alzamora; Robson A.S. Santos; Maria José Campagnole-Santos

Collaboration


Dive into the Andréia Carvalho Alzamora's collaboration.

Top Co-Authors

Avatar

Maria José Campagnole-Santos

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Almir S. Martins

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Daisy Motta-Santos

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Michael Bader

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar

Natalia Alenina

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar

Adriano M.C. Pimenta

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Anderson J. Ferreira

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Antonio Bastos Peluso

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Daniel C. Villela

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Danielle Passos-Silva

Universidade Federal de Minas Gerais

View shared research outputs
Researchain Logo
Decentralizing Knowledge