Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrej Babič is active.

Publication


Featured researches published by Andrej Babič.


Diabetologia | 2015

Targeting GLP-1 receptors for repeated magnetic resonance imaging differentiates graded losses of pancreatic beta cells in mice

Laurent Vinet; Smaragda Lamprianou; Andrej Babič; Norbert Lange; Fabrizio Thorel; Pedro Luis Herrera; Xavier Montet; Paolo Meda

Aims/hypothesisNon-invasive imaging of beta cells is a much-needed development but is one that faces significant biological and technological hurdles. A relevant imaging method should at least allow for an evaluation over time of the mass of beta cells under physiological and pathological conditions, and for an assessment of novel therapies. We, therefore, investigated the ability of a new MRI probe to repeatedly measure the loss of beta cells in a rodent model.MethodsWe developed an innovative nanoparticle probe that targets the glucagon-like peptide 1 receptor, and can be used for both fluorescence imaging and MRI. Using fluorescence, we characterised the specificity and biodistribution of the probe. Using 1.5T MRI, we longitudinally imaged the changes in insulin content in male and female mice of the RIP-DTr strain, which mimic the changes expected in type 1 and type 2 diabetes, respectively.ResultsWe showed that this probe selectively labelled beta cells in situ, imaged in vivo native pancreatic islets and evaluated their loss after diphtheria toxin administration, in a model of graded beta cell deletion. Thus, using clinical MRI, the probe quantitatively differentiates, in the same mouse strain, between female animals featuring a 50% loss of beta cells and the males featuring an almost complete loss of beta cells.Conclusions/interpretationThe approach addresses several of the hurdles that have so far limited the non-invasive imaging of beta cells, including the potential to repeatedly monitor the very same animals using clinically available equipment, and to differentiate graded losses of beta cells.


Journal of Controlled Release | 2016

Tunable phosphatase-sensitive stable prodrugs of 5-aminolevulinic acid for tumor fluorescence photodetection.

Andrej Babič; Viktorija Herceg; Imène Ateb; Eric Allémann; Norbert Lange

5-Aminolevulinic acid (5-ALA) has been at the forefront of small molecule based fluorescence-guided tumor resection and photodynamic therapy. 5-ALA and two of its esters received marketing authorization but suffer from several major limitations, namely low stability and poor pharmacokinetic profile. Here, we present a new class of 5-ALA derivatives aiming at the stabilization of 5-ALA by incorporating a phosphatase sensitive group, with or without self-cleavable linker. Compared to 5-ALA hexyl ester (5-ALA-Hex), these compounds display an excellent stability under acidic, basic and physiological conditions. The activation and conversion into the 5-ALA is controlled and can be structure-tailored. The prodrugs display reduced acute toxicity compared to 5-ALA-Hex with superior dose response profiles of protoporphyrin IX synthesis and fluorescence intensity in human glioblastoma cells in vitro. Clinically relevant fluorescence kinetics in vivo shown in U87MG glioblastoma spheroid tumor model in chick embryos provide a solid basis for their further development and translation to clinical fluorescence guided tumor resection and photodynamic therapy.


Journal of Photochemistry and Photobiology B-biology | 2017

Activity of phosphatase-sensitive 5-aminolevulinic acid prodrugs in cancer cell lines

Viktorija Herceg; Norbert Lange; Eric Allémann; Andrej Babič

5-aminolevulinc acid (5-ALA)-based photodynamic therapy (PDT) and photodiagnosis (PD) present many advantages over treatments with conventional photosensitizers (PS). It offers great tumor specificity, reduced photosensitivity reactions caused by PS accumulation in non-targeted tissues and also inherent PS metabolism into endogenous non-fluorescent heme. However, chemical instability, low bioavailability and poor pharmacokinetic profile limit systemic efficacy of 5-ALA. Here, we present a comprehensive in vitro evaluation of novel phosphatase-sensitive prodrugs of 5-ALA. These prodrugs are designed to be activated by ubiquitously expressed phosphatases with much improved chemical stability and reduced acute toxicity profile. PpIX kinetic measurements and flow cytometry show accumulation of PpIX upon incubation with phosphatase-sensitive prodrugs in PC3 human prostate cell cancer, MCF7 breast adenocarcinoma, U87MG glioblastoma, T24 bladder cancer and A549 lung carcinoma cells. They revealed a different fluorescence kinetics and dose-response curves for the different types of 5-ALA prodrugs. These experiments have allowed us to identify the most promising cancer cell types for phospho- 5-ALA prodrugs. Confocal fluorescence microscopy provided further evidence of fluorescent protoporphyrin IX accumulation and sub-cellular localisation. These findings, together with the low toxicity profile of phosphatase-sensitive prodrugs of 5-ALA and good response to PDT provide solid basis for future translational development in PC3, MCF7 and U87MG cancer types.


Biomaterials | 2016

Multivalent glibenclamide to generate islet specific imaging probes

Andrej Babič; Smaragda Lamprianou; Laurent Vinet; Nathalie Stransky-Heilkron; Celine Xayaphoummine; Marino A. Campo; Heiner Glombik; Anke Schulte; Hans-Paul Juretschke; Xavier Montet; Paolo Meda; Norbert Lange

The monitoring of diabetes mellitus, as it develops and becomes clinically evident, remains a major challenge for diagnostic imaging in clinical practice. Here we present a novel approach to beta-cell imaging by targeting the sulphonylurea receptor subtype 1 (SUR1), using multivalent derivatives of the anti-diabetic drug glibenclamide. Since glibenclamide has a high affinity for SUR1 but does not contain a suitable functional group to be linked to an imaging probe, we have synthesized 11 glibenclamide derivatives and evaluated their affinity to SUR1 in MIN6 cells. The most promising compound has been used to obtain multivalent glibenclamide-polyamidoamine (PAMAM) derivatives, containing up to 15 sulphonylurea moieties per dendrimer. The remaining functional groups on the dendrimers can consecutively be used for labeling with reporter groups for different imaging modalities, thus allowing for multifunctional imaging, and for the modification of pharmacokinetic properties. We synthesized fluorochrome-labeled multivalent probes, that demonstrate in cellular assays affinities to SUR1 in the nanomolar range, superior to native glibenclamide. The probes specifically label MIN6 cells, but not HeLa or PANC-1 cells which do not express SUR1. A very low cytotoxicity of the multivalent probes is demonstrated by the persistent release of insulin from MIN6 cells exposed to high glucose concentrations. Furthermore, the probes display positive labeling of beta-cells of primary mouse and human islet-cells ex vivo and of islets of Langerhans in vivo. The data document that multivalent probes based on glibenclamide derivatives provide a suitable platform for further developments of cell-specific probes, and can be adapted for multiple imaging modalities, including those that are now used in the clinics.


PLOS ONE | 2013

A UDP-X Diphosphatase from Streptococcus pneumoniae Hydrolyzes Precursors of Peptidoglycan Biosynthesis

Krisna C. Duong-Ly; Hyun Nyun Woo; Christopher A. Dunn; WenLian L. Xu; Andrej Babič; Maurice J. Bessman; L. Mario Amzel; Sandra B. Gabelli

The gene for a Nudix enzyme (SP_1669) was found to code for a UDP-X diphosphatase. The SP_1669 gene is localized among genes encoding proteins that participate in cell division in Streptococcus pneumoniae. One of these genes, MurF, encodes an enzyme that catalyzes the last step of the Mur pathway of peptidoglycan biosynthesis. Mur pathway substrates are all derived from UDP-glucosamine and all are potential Nudix substrates. We showed that UDP-X diphosphatase can hydrolyze the Mur pathway substrates UDP-N-acetylmuramic acid and UDP-N-acetylmuramoyl-L-alanine. The 1.39 Å resolution crystal structure of this enzyme shows that it folds as an asymmetric homodimer with two distinct active sites, each containing elements of the conserved Nudix box sequence. In addition to its Nudix catalytic activity, the enzyme has a 3′5′ RNA exonuclease activity. We propose that the structural asymmetry in UDP-X diphosphatase facilitates the recognition of these two distinct classes of substrates, Nudix substrates and RNA. UDP-X diphosphatase is a prototype of a new family of Nudix enzymes with unique structural characteristics: two monomers, each consisting of an N-terminal helix bundle domain and a C-terminal Nudix domain, form an asymmetric dimer with two distinct active sites. These enzymes function to hydrolyze bacterial cell wall precursors and degrade RNA.


Chemistry: A European Journal | 2018

Self‐Assembled Nanomicelles as MRI Blood‐Pool Contrast Agent

Andrej Babič; Vassily Vorobiev; Celine Xayaphoummine; Gaelle Lapicorey; Anne-Sophie Chauvin; Lothar Helm; Eric Allémann

Gadolinium-loaded nanomicelles show promise as future magnetic resonance imaging (MRI) contrast agents (CAs). Their increased size and high gadolinium (Gd) loading gives them an edge in proton relaxivity over smaller molecular Gd-complexes. Their size and stealth properties are fundamental for their long blood residence time, opening the possibility for use as blood-pool contrast agents. Using l-tyrosine as a three-functional scaffold we synthesized a nanostructure building block 8. The double C18 aliphatic chain on one side, Gd-1,4,7,10-tetraazacyclododecane-1-4-7-triacetic acid (Gd-DO3A) with access to bulk water in the center and 2 kDa PEG on the hydrophilic side gave the amphiphilic properties required for the core-shell nanomicellar architecture. The self-assembly into Gd-loaded monodispersed 10-20 nm nanomicelles occurred spontaneously in water. These nanomicelles (Tyr-MRI) display very high relaxivity at 29 mm-1  s-1 at low field strength and low cytotoxicity. Good contrast enhancement of the blood vessels and the heart together with prolonged circulation time in vivo, makes Tyr-MRI an excellent candidate for a new supramolecular blood-pool MRI CA.


Bioorganic Chemistry | 2018

Design, synthesis and in vitro evaluation of β-glucuronidase-sensitive prodrug of 5-aminolevulinic acid for photodiagnosis of breast cancer cells

Viktorija Herceg; Souad Adriouach; Karolina Janikowska; Eric Allémann; Norbert Lange; Andrej Babič

Treatment of cancer cells by clinically approved hexyl ester of 5-aminolevulinic acid (ALA-Hex) induces accumulation of fluorescent porphyrins in tumors. This allows fluorescence photodiagnosis (PD) of bladder cancer by blue light illumination. However, PD of other cancers is hampered by acute toxicity of the compound limiting its use to local applications. We have designed and synthesized a new prodrug of ALA-Hex that tackles the stability-activity paradox of amino-modified 5-ALA prodrugs. The glucuronide prodrug Glu-ALA-Hex demonstrates excellent stability under physiological conditions and activation in the presence of the target enzyme. β-glucuronidase-triggered release of 5-ALA is programmed to yield fluorescence in tumor environment with elevated β-glucuronidase activity, a characteristic of many solid tumors. Glu-ALA-Hex produces similar levels of fluorescence as ALA-Hex in breast cancer MCF7 cells in vitro but with much lower non-specific cell toxicity.


Nanomedicine: Nanotechnology, Biology and Medicine | 2018

Squalene-PEG: Pyropheophorbide – a nanoconstruct for tumor theranostics

Souad Adriouach; Vassily Vorobiev; Gregor Trefalt; Eric Allémann; Norbert Lange; Andrej Babič

Novel nanoscale drug delivery biomaterials are of great importance for the diagnosis and treatment of different cancers. We have developed a new pegylated squalene (SQ-PEG) derivative with self-assembly properties. Supramolecular assembly with a lipophilic photosensitizer pyropheophorbide-a (Ppa) by nanoprecipitation gave nanoconstructs SQ-PEG:Ppa with an average size of 200 nm in diameter and a drug loading of 18% (w/w). The composite material demonstrates nanoscale optical properties by tight packing of Ppa within Sq-PEG:Ppa resulting in 99.99% fluorescence self-quenching. The biocompatibility of the nanomaterial and cell phototoxicity under light irradiation were investigated on PC3 prostate tumor cells in vitro. SQ-PEG:Ppa showed excellent phototoxic effect at low light dose of 5.0 J/cm2 as a consequence of efficient cell internalization of Ppa by the nanodelivery system. The diagnostic potential of SQ-PEG:Ppa nanoconstructs to deliver Ppa to tumors in vivo was demonstrated in chick embryo model implanted with U87MG glioblastoma micro tumors.


Bioconjugate Chemistry | 2018

Squalene-PEG-Exendin as High-Affinity Constructs for Pancreatic Beta-Cells

Andrej Babič; Laurent Vinet; Vineetha Chellakudam; Karolina Janikowska; Eric Allémann; Norbert Lange

Novel drug delivery systems targeting native, transplanted, or cancerous beta-cells are of utmost importance. Herein, we present new exendin-4 derivatives with modified unnatural amino acids at strategic positions within the polypeptide sequence. The modified peptides allowed modular orthogonal chemical modifications to attach imaging agents and amphiphilic squalene-PEG groups. The resulting conjugates, SQ-PEG-ExC1-Cy5 and SQ-PEG-ExC40-Cy5 fluorescence probes, display low nanomolar affinity to GLP-1R in fluorescence-based binding assays with EC50 at 1.1 ± 0.2 and 0.8 ± 0.2 nM, respectively. Naturally expressing GLP-1R MIN6 cells and recombinantly transfected CHL-GLP-1R positive cells were specifically targeted by all of the new beta-cell probes in vitro. Specific islet targeting was observed after i.v. injection of SQ-PEG-ExC1-Cy5 with SQ-PEG in normoglycemic mice ex vivo. Semiquantitative biodistribution analysis by epifluorescence indicated prolonged blood half-life (3.8 h) for the amphiphilic Ex conjugate. Liver and pancreas were identified as main biodistribution organs for SQ-PEG-ExC1-Cy5.


Advanced Functional Materials | 2017

[4]Helicene–Squalene Fluorescent Nanoassemblies for Specific Targeting of Mitochondria in Live-Cell Imaging

Andrej Babič; Simon Pascal; Romain Duwald; Dimitri Moreau; Jérôme Lacour; Eric Allémann

Collaboration


Dive into the Andrej Babič's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge