Andrej Coer
University of Primorska
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrej Coer.
Biomaterials | 2012
Sara Prijic; Lara Prosen; Maja Cemazar; Janez Ščančar; Rok Romih; Jaka Lavrencak; Vladimir B. Bregar; Andrej Coer; Mojca Krzan; Andrej Znidarsic; Gregor Sersa
Cancer immuno-gene therapy is an introduction of nucleic acids encoding immunostimulatory proteins, such as cytokine interleukin 12 (IL-12), into somatic cells to stimulate an immune response against a tumor. Various methods can be used for the introduction of nucleic acids into cells; magnetofection involves binding of nucleic acids to magnetic nanoparticles with subsequent exposure to an external magnetic field. Here we show that surface modified superparamagnetic iron oxide nanoparticles (SPIONs) with a combination of polyacrylic acid (PAA) and polyethylenimine (PEI) (SPIONs-PAA-PEI) proved to be safe and effective for magnetofection of cells and tumors in mice. Magnetofection of cells with plasmid DNA encoding reporter gene using SPIONs-PAA-PEI was superior in transfection efficiency to commercially available SPIONs. Magnetofection of murine mammary adenocarcinoma with plasmid DNA encoding IL-12 using SPIONs-PAA-PEI resulted in significant antitumor effect and could be further refined for cancer immuno-gene therapy.
Gene Therapy | 2007
Suzana Mesojednik; Darja Pavlin; Gregor Sersa; Andrej Coer; Simona Kranjc; A Grosel; Gregor Tevz; Maja Cemazar
Uniform DNA distribution in tumors is a prerequisite step for high transfection efficiency in solid tumors. To improve the transfection efficiency of electrically assisted gene delivery to solid tumors in vivo, we explored how tumor histological properties affected transfection efficiency. In four different tumor types (B16F1, EAT, SA-1 and LPB), proteoglycan and collagen content was morphometrically analyzed, and cell size and cell density were determined in paraffin-embedded tumor sections under a transmission microscope. To demonstrate the influence of the histological properties of solid tumors on electrically assisted gene delivery, the correlation between histological properties and transfection efficiency with regard to the time interval between DNA injection and electroporation was determined. Our data demonstrate that soft tumors with larger spherical cells, low proteoglycan and collagen content, and low cell density are more effectively transfected (B16F1 and EAT) than rigid tumors with high proteoglycan and collagen content, small spindle-shaped cells and high cell density (LPB and SA-1). Furthermore, an optimal time interval for increased transfection exists only in soft tumors, this being in the range of 5–15 min. Therefore, knowledge about the histology of tumors is important in planning electrogene therapy with respect to the time interval between DNA injection and electroporation.
Journal of Gene Medicine | 2009
Gregor Tevz; Simona Kranjc; Maja Cemazar; Urska Kamensek; Andrej Coer; Mojca Krzan; Suzana Vidic; Darja Pavlin; Gregor Sersa
The present study aimed to evaluate the antitumor effectiveness of systemic interleukin (IL)‐12 gene therapy in murine sarcoma models, and to evaluate its interaction with the irradiation of tumors and metastases. To avoid toxic side‐effects of IL‐12 gene therapy, the objective was to achieve the controlled release of IL‐12 after intramuscular gene electrotransfer.
PLOS ONE | 2013
Tanja Dolinsek; Bostjan Markelc; Gregor Sersa; Andrej Coer; Monika Stimac; Jaka Lavrencak; Andreja Brozic; Simona Kranjc; Maja Cemazar
Endoglin is a transforming growth factor-β (TGF- β) co-receptor that participates in the activation of a signaling pathway that mediates endothelial cell proliferation and migration in angiogenic tumor vasculature. Therefore, silencing of endoglin expression is an attractive approach for antiangiogenic therapy of tumors. The aim of our study was to evaluate the therapeutic potential of small interfering RNA (siRNA) molecules against endoglin in vitro and in vivo. Therapeutic potential in vitro was assessed in human and murine endothelial cells (HMEC-1, 2H11) by determining endoglin expression level, cell proliferation and tube formation. In vivo, the therapeutic potential of siRNA molecules was evaluated in TS/A mammary adenocarcinoma growing in BALB/c mice. Results of our study showed that siRNA molecules against endoglin have a good antiangiogenic therapeutic potential in vitro, as expression of endoglin mRNA and protein levels in mouse and human microvascular endothelial cells after lipofection were efficiently reduced, which resulted in the inhibition of endothelial cell proliferation and tube formation. In vivo, silencing of endoglin with triple electrotransfer of siRNA molecules into TS/A mammary adenocarcinoma also significantly reduced the mRNA levels, number of tumor blood vessels and the growth of tumors. The obtained results demonstrate that silencing of endoglin is a promising antiangiogenic therapy of tumors that could not be used as single treatment, but as an adjunct to the established cytotoxic treatment approaches.
Technology in Cancer Research & Treatment | 2008
Gregor Tevz; Darja Pavlin; Urska Kamensek; Simona Kranjc; Suzana Mesojednik; Andrej Coer; Gregor Sersa; Maja Cemazar
Skeletal muscle is an attractive target tissue for delivery of therapeutic genes, since it is well vascularized, easily accessible, and has a high capacity for protein synthesis. For efficient transfection in skeletal muscle, several protocols have been described, including delivery of low voltage electric pulses and a combination of high and low voltage electric pulses. The aim of this study was to determine the influence of different parameters of electrotransfection on short-term and long-term transfection efficiency in murine skeletal muscle, and to evaluate histological changes in the treated tissue. Different parameters of electric pulses, different time lags between plasmid DNA injection and application of electric pulses, and different doses of plasmid DNA were tested for electrotransfection of tibialis cranialis muscle of C57Bl/6 mice using DNA plasmid encoding green fluorescent protein (GFP). Transfection efficiency was assessed on frozen tissue sections one week after electrotransfection using a fluorescence microscope and also noninvasively, followed by an in vivo imaging system using a fluorescence stereo microscope over a period of several months. Histological changes in muscle were evaluated immediately or several months after electrotransfection by determining infiltration of inflammatory mononuclear cells and presence of necrotic muscle fibers. The most efficient electrotransfection into skeletal muscle of C57Bl/6 mice in our experiments was achieved when one high voltage (HV) and four low voltage (LV) electric pulses were applied 5 seconds after the injection of 30 μg of plasmid DNA. This protocol resulted in the highest short-term as well as long-term transfection. The fluorescence intensity of the transfected area declined after 2–3 weeks, but GFP fluorescence was still detectable 18 months after electrotransfection. Extensive inflammatory mononuclear cell infiltration was observed immediately after the electrotransfection procedure using the described parameters, but no necrosis or late tissue damage was observed. This study showed that electric pulse parameters, time lag between the injection of DNA and application of electric pulses, and dose of plasmid DNA affected the duration of transgene expression in murine skeletal muscle. Therefore, transgene expression in muscle can be controlled by appropriate selection of electrotransfection protocol.
Human Gene Therapy | 2012
Maja Cemazar; Muriel Golzio; Gregor Sersa; Jean-Michel Escoffre; Andrej Coer; Suzana Vidic; Justin Teissié
One of the applications of electroporation/electropulsation in biomedicine is gene electrotransfer, the wider use of which is hindered by low transfection efficiency in vivo compared with viral vectors. The aim of our study was to determine whether modulation of the extracellular matrix in solid tumors, using collagenase and hyaluronidase, could increase the transfection efficiency of gene electrotransfer in histologically different solid subcutaneous tumors in mice. Tumors were treated with enzymes before electrotransfer of plasmid DNA encoding either green fluorescent protein or luciferase. Transfection efficiency was determined 3, 9, and 15 days posttransfection. We demonstrated that pretreatment of tumors with a combination of enzymes significantly increased the transfection efficiency of electrotransfer in tumors with a high extracellular matrix area (LPB fibrosarcoma). In tumors with a smaller extracellular matrix area and less organized collagen lattice, the increase was not so pronounced (SA-1 fibrosarcoma and EAT carcinoma), whereas in B16 melanoma, in which only traces of collagen are present, pretreatment of tumors with hyaluronidase alone was more efficient than pretreatment with both enzymes. In conclusion, our results suggest that modification of the extracellular matrix could improve distribution of plasmid DNA in solid subcutaneous tumors, demonstrated by an increase in transfection efficiency, and thus have important clinical implications for electrogene therapy.
BMC Cancer | 2013
Ales Sedlar; Simona Kranjc; Tanja Dolinsek; Maja Cemazar; Andrej Coer; Gregor Sersa
BackgroundInterleukin-12 (IL-12) based radiosensitization is an effective way of tumor treatment. Local cytokine production, without systemic shedding, might provide clinical benefit in radiation treatment of sarcomas. Therefore, the aim was to stimulate intratumoral IL-12 production by gene electrotransfer of plasmid coding for mouse IL-12 (mIL-12) into the tumors, in order to explore its radiosensitizing effect after single or multiple intratumoral gene electrotransfer.MethodsSolid SA-1 fibrosarcoma tumors, on the back of A/J mice, were treated intratumorally by mIL-12 gene electrotransfer and 24 h later irradiated with a single dose. Treatment effectiveness was measured by tumor growth delay and local tumor control assay (TCD50 assay). With respect to therapeutic index, skin reaction in the radiation field was scored. The tumor and serum concentrations of cytokines mIL-12 and mouse interferon γ (mIFNγ) were measured. Besides single, also multiple intratumoral mIL-12 gene electrotransfer before and after tumor irradiation was evaluated.ResultsSingle intratumoral mIL-12 gene electrotransfer resulted in increased intratumoral but not serum mIL-12 and mIFNγ concentrations, and had good antitumor (7.1% tumor cures) and radiosensitizing effect (21.4% tumor cures). Combined treatment resulted in the radiation dose-modifying factor of 2.16. Multiple mIL-12 gene electrotransfer had an even more pronounced antitumor (50% tumor cures) and radiosensitizing (86.7% tumor cures) effect.ConclusionsSingle or multiple intratumoral mIL-12 gene electrotransfer resulted in increased intratumoral mIL-12 and mIFNγ cytokine level, and may provide an efficient treatment modality for soft tissue sarcoma as single or adjuvant therapy to tumor irradiation.
Radiology and Oncology | 2015
Maja Cemazar; Vesna Todorovic; Janez Ščančar; Ursa Lampreht; Monika Stimac; Urska Kamensek; Simona Kranjc; Andrej Coer; Gregor Sersa
Abstract Background. Electrochemotherapy is a tumour ablation modality, based on electroporation of the cell membrane, allowing non-permeant anticancer drugs to enter the cell, thus augmenting their cytotoxicity by orders of magnitude. In preclinical studies, bleomycin and cisplatin proved to be the most suitable for clinical use. Intravenous administration of cisplatin for electrochemotherapy is still not widely accepted in the clinics, presumably due to its lower antitumor effectiveness, but adjuvant therapy by immunomodulatory or vascular-targeting agents could provide a way for its potentiation. Hence, the aim of the present study was to explore the possibility of adjuvant tumour necrosis factor α (TNF-α) therapy to potentiate antitumor effectiveness of electrochemotherapy with intravenous cisplatin administration in murine sarcoma. Materials and methods. In vivo study was designed to evaluate the effect of TNF-α applied before or after the electrochemotherapy and to evaluate the effect of adjuvant TNF-α on electrochemotherapy with different cisplatin doses. Results. A synergistic interaction between TNF-α and electrochemotherapy was observed. Administration of TNF-α before the electrochemotherapy resulted in longer tumour growth delay and increased tumour curability, and was significantly more effective than TNF-α administration after the electrochemotherapy. Tumour analysis revealed increased platinum content in tumours, TNF-α induced blood vessel damage and increased tumour necrosis after combination of TNF-α and electrochemotherapy, indicating an anti-vascular action of TNF-α. In addition, immunomodulatory effect might have contributed to curability rate of the tumours. Conclusion. Adjuvant intratumoural TNF-α therapy synergistically contributes to electrochemotherapy with intravenous cisplatin administration. Due to its potentiation at all doses of cisplatin, the combined treatment is predicted to be effective also in tumours, where the drug concentration is suboptimal or in bigger tumours, where electrochemotherapy with intravenous cisplatin is not expected to be sufficiently effective.
Bioelectrochemistry | 2015
Bostjan Markelc; Eva Skvarca; Tanja Dolinsek; Veronika Prevodnik Kloboves; Andrej Coer; Gregor Sersa; Maja Cemazar
Application of electric pulses (electroporation/electropermeabilization) is an effective method for gene transfer (i.e. gene electrotransfer (GET)) in vitro and in vivo. Currently, the mechanisms by which the DNA enters the cell are not yet fully understood. Experimental evidence is building up that endocytosis is the main mechanism by which the DNA, which is later expressed, enters the cell. Therefore the aim of our study was to elucidate whether inhibitors of endocytosis, methyl-β-cyclodextrin (MβCD), Concanavalin A (ConA) and Dynasore, can impair the transfection efficacy of GET in vitro in B16F1 murine melanoma and in vivo in m. tibialis cranialis in mice. We show that MβCD--general inhibitor of endocytosis--can almost prevent GET of EGFP-N1 plasmid in vitro, that ConA--inhibitor of clathrin mediated endocytosis--also abrogates GET but to a lesser extent, and when using Dynasore--reversible inhibitor of dynamin--there is no effect on GET efficacy, if endocytosis is blocked for only 5 min after GET. Moreover, MβCD also reduced GET efficacy in vivo in m. tibialis cranialis and this effect was long lasting. The results of this study show that endocytosis is probably the main mechanism of entrance of DNA after GET in vitro and also in vivo.
Cancer Gene Therapy | 2016
M Stimac; Urska Kamensek; Maja Cemazar; Simona Kranjc; Andrej Coer; Gregor Sersa
Gene electrotransfer of plasmid encoding shRNA against endoglin exerts antitumor efficacy, predominantly by vascular targeted effect. As vascular targeting therapies can promote radiosensitization, the aim of this study was to explore this gene therapy approach with single and split dose of irradiation in an endoglin non-expressing TS/A mammary adenocarcinoma tumor model to specifically study the vascular effects. Intratumoral gene electrotransfer of plasmids encoding shRNA against endoglin, under the control of a constitutive or tissue-specific promoter for endothelial cells, combined with a single or three split doses of irradiations was evaluated for the antitumor efficacy and histologically. Both plasmids proved to be equally effective in tumor radiosensitization with 40–47% of tumor cures. The combined treatment induced a significant decrease in the number of blood vessels and proliferating cells, and an increase in levels of necrosis, apoptosis and hypoxia; therefore, the antitumor efficacy was ascribed to the interaction of vascular targeted effect of gene therapy with irradiation. Endoglin silencing by the shRNA technology, combined with electrotransfer and the use of a tissue-specific promoter for endothelial cells, proved to be a feasible and effective therapeutic approach that can be used in combined treatment with tumor irradiation.