Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrej Frolov is active.

Publication


Featured researches published by Andrej Frolov.


Journal of Biological Chemistry | 2008

Structural Basis for Pattern Recognition by the Receptor for Advanced Glycation End Products (RAGE)

Jingjing Xie; Sergey Reverdatto; Andrej Frolov; Ralf Hoffmann; David S. Burz; Alexander Shekhtman

The receptor for advanced glycated end products (RAGE) is a multiligand receptor that is implicated in the pathogenesis of various diseases, including diabetic complications, neurodegenerative disorders, and inflammatory responses. The ability of RAGE to recognize advanced glycated end products (AGEs) formed by nonenzymatic glycoxidation of cellular proteins places RAGE in the category of pattern recognition receptors. The structural mechanism of AGE recognition was an enigma due to the diversity of chemical structures found in AGE-modified proteins. Here, using NMR spectroscopy we showed that the immunoglobulin V-type domain of RAGE is responsible for recognizing various classes of AGEs. Three distinct surfaces of the V domain were identified to mediate AGE-V domain interactions. They are located in the positively charged areas of the V domain. The first interaction surface consists of strand C and loop CC ′, the second interaction surface consists of strand C ′, strand F, and loop FG, and the third interaction surface consists of strand A ′ and loop EF. The secondary structure elements of the interaction surfaces exhibit significant flexibility on the ms-μs time scale. Despite highly specific AGE-V domain interactions, the binding affinity of AGEs for an isolated V domain is low, ∼10 μm. Using in-cell fluorescence resonance energy transfer we show that RAGE is a constitutive oligomer on the plasma membrane. We propose that constitutive oligomerization of RAGE is responsible for recognizing patterns of AGE-modified proteins with affinities less than 100 nm.


Plant Methods | 2012

An UPLC-MS/MS method for highly sensitive high-throughput analysis of phytohormones in plant tissues

Gerd Ulrich Balcke; Vinzenz Handrick; Nick Bergau; Mandy Fichtner; Anja Henning; Hagen Stellmach; Alain Tissier; Bettina Hause; Andrej Frolov

BackgroundPhytohormones are the key metabolites participating in the regulation of multiple functions of plant organism. Among them, jasmonates, as well as abscisic and salicylic acids are responsible for triggering and modulating plant reactions targeted against pathogens and herbivores, as well as resistance to abiotic stress (drought, UV-irradiation and mechanical wounding). These factors induce dramatic changes in phytohormone biosynthesis and transport leading to rapid local and systemic stress responses. Understanding of underlying mechanisms is of principle interest for scientists working in various areas of plant biology. However, highly sensitive, precise and high-throughput methods for quantification of these phytohormones in small samples of plant tissues are still missing.ResultsHere we present an LC-MS/MS method for fast and highly sensitive determination of jasmonates, abscisic and salicylic acids. A single-step sample preparation procedure based on mixed-mode solid phase extraction was efficiently combined with essential improvements in mobile phase composition yielding higher efficiency of chromatographic separation and MS-sensitivity. This strategy resulted in dramatic increase in overall sensitivity, allowing successful determination of phytohormones in small (less than 50 mg of fresh weight) tissue samples. The method was completely validated in terms of analyte recovery, sensitivity, linearity and precision. Additionally, it was cross-validated with a well-established GC-MS-based procedure and its applicability to a variety of plant species and organs was verified.ConclusionThe method can be applied for the analyses of target phytohormones in small tissue samples obtained from any plant species and/or plant part relying on any commercially available (even less sensitive) tandem mass spectrometry instrumentation.


Analytical and Bioanalytical Chemistry | 2010

Identification and relative quantification of specific glycation sites in human serum albumin

Andrej Frolov; Ralf Hoffmann

Glycation (or non-enzymatic glycosylation) is a common non-enzymatic covalent modification of human proteins. Glucose, the highest concentrated monosaccharide in blood, can reversibly react with amino groups of proteins to form Schiff bases that can rearrange to form relatively stable Amadori products. These can be further oxidized to advanced glycation end products (AGEs). Here, we analyzed the glycation patterns of human serum albumin (HSA) in plasma samples obtained from five patients with type 2 diabetes mellitus. Therefore, glycated peptides from a tryptic digest of plasma were enriched with m-aminophenylboronic acid (mAPBA) affinity chromatography. The glycated peptides were then further separated in the second dimension by RP-HPLC coupled on-line to an electrospray ionization (ESI) tandem mass spectrometer (MS/MS). Altogether, 18 Amadori peptides, encompassing 40% of the HSA sequence, were identified. The majority of the peptides were detected and relatively quantified in all five samples with a high reproducibility among the replicas. Eleven Lys-residues were glycated at similar quantities in all samples, with glycation site Lys549 (KAm(Glc)QTALVELVK) being the most abundant. In conclusion, the established mAPBA/nanoRP-HPLC-ESI-MS/MS approach could reproducibly identify and quantify glycation sites in plasma samples, potentially useful in diagnosis and therapeutic control.


Annals of the New York Academy of Sciences | 2008

Analysis of Amadori Peptides Enriched by Boronic Acid Affinity Chromatography

Andrej Frolov; Ralf Hoffmann

Glycation of peptides and proteins by D‐glucose is a universal, nonenzymatic reaction with important implications for the pathogenesis and diagnosis of many diseases, including diabetes mellitus. Whereas some modification sites have been identified in serum albumin and hemoglobin, a general approach to map glycation sites for nonabundant proteins present in complex mixtures, such as serum, is still missing. Here, we describe a universal enrichment procedure for glycated peptides using boronic acid affinity chromatography in the first dimension followed by reversed‐phase chromatography, coupled either online to electrospray ionization mass spectrometry (ESI–MS) or offline to matrix‐assisted laser desorption/ionization (MALDI) MS. This two‐dimensional approach was optimized for high recoveries and low cross reactivities. For bovine serum albumin, a total of 31 Amadori peptides were identified in a tryptic digest corresponding to 26 different glycation sites.


Analytical and Bioanalytical Chemistry | 2010

Profiling of hydroxycinnamic acid amides in Arabidopsis thaliana pollen by tandem mass spectrometry.

Vinzenz Handrick; Thomas Vogt; Andrej Frolov

Phenylpropanoid polyamine conjugates are widespread in plant species. Their presence has been established in seeds, flower buds, and pollen grains. A biosynthetic pathway proposed for hydroxycinnamoyl spermidine conjugates has been suggested for the model plant Arabidopsis thaliana with a central acyl transfer reaction performed by a BAHD-like hydroxycinnamoyl transferase. A detailed liquid chromatography (LC)–electrospray ionization–mass spectrometry- and tandem-mass-spectrometry (MS/MS)-based survey of wild-type and spermidine hydroxycinnamoyl transferase (SHT) mutants identified more than 30 different bis- and tris-substituted spermidine conjugates, five of which were glycosylated, in the methanol-soluble fraction of the pollen exine. On the basis of characterized fragmentation patterns, a high-throughput LC–MS/MS method for highly sensitive HCAA relative quantification (targeted profiling) was developed. Only minor qualitative and quantitative differences in the pattern of bis-acyl spermidine conjugates in the SHT mutant compared to wild-type plants provide strong evidence for the presence of multiple BAHD-like acyl transferases and suggest a much more complex array of enzymatic steps in the biosynthesis of these conjugates than previously anticipated.


Analytical and Bioanalytical Chemistry | 2008

Separation of Amadori peptides from their unmodified analogs by ion-pairing RP-HPLC with heptafluorobutyric acid as ion-pair reagent

Andrej Frolov; Ralf Hoffmann

Glycation is a common class of nonenzymatic posttranslational modifications relevant for several diseases and cell aging in general, such as D-glucose-derived modifications at the ɛ-amino groups of lysine residues in blood proteins, especially albumin, immunoglobulin, and hemoglobin, for diabetic patients. These Amadori compounds are identified on the peptide level after enzymatic digestion and chromatographic separation by mass spectrometry. Their syntheses usually rely on a global glycation approach. Both areas require the reliable separation of glycated peptides from their unmodified congeners present in different ratios, which is typically not achieved by standard eluent systems in ion-pairing RP-HPLC (IP-RPLC). Here, we compare aqueous acetonitrile and methanol gradients containing either trifluoroacetic acid (TFA) or heptafluorobutyric acid (HFBA) as ion-pairing agents to separate such peptide pairs. TFA-containing eluents resulted in rather low resolutions, and the glycated and unglycated peptides often coeluted. HFBA increased the retention times of the unmodified peptide more than for the glycated peptide thereby improving the separation of all eight studied peptide pairs, even achieving baseline separations for some sequences. Thus the use of HFBA as ion-pair reagent provides a universally applicable eluent system in IP-RPLC to separate glycated peptides from their unmodified counterparts, even at the preparative scale required for synthetic peptides.


Analytical and Bioanalytical Chemistry | 2014

Glycation sites of human plasma proteins are affected to different extents by hyperglycemic conditions in type 2 diabetes mellitus

Andrej Frolov; Matthias Blüher; Ralf Hoffmann

AbstractGlucose can modify proteins in human blood, forming early glycation products (e.g., Amadori compounds), which can slowly degrade to advanced glycation endproducts (AGEs). AGEs contribute significantly to complications of diabetes mellitus and, thus, represent markers of advanced disease stages. They are, however, currently unsuitable for early diagnosis and therapeutic monitoring. Here, we report sensitive strategies to identify and relatively quantify protein glycation sites in human plasma samples obtained from type 2 diabetes mellitus (T2DM) patients and age-matched nondiabetic individuals using a bottom-up approach. Specifically, Amadori peptides were enriched from tryptic digests by boronic acid affinity chromatography, separated by reversed-phase chromatography, and analyzed on-line by high-resolution mass spectrometry. Among the 52 Amadori peptides studied here were 20 peptides resembling 19 glycation sites in six human proteins detected at statistically significantly higher levels in T2DM than in the normoglycemic controls. Four positions appeared to be unique for T2DM within the detection limit. All 19 glycation sites represent promising new biomarker candidates for early diagnosis of T2DM and adequate therapeutic control, as they may indicate early metabolic changes preceding T2DM. Graphical Abstractᅟ


Journal of Agricultural and Food Chemistry | 2014

Arginine-Derived Advanced Glycation End Products Generated in Peptide–Glucose Mixtures During Boiling

Andrej Frolov; Rico Schmidt; Sandro Spiller; Uta Greifenhagen; Ralf Hoffmann

Glycation refers to the reaction of amino groups, for example in proteins, with reducing sugars. Intermediately formed Amadori products can be degraded by oxidation (Maillard reactions) leading to a heterogeneous class of advanced glycation end-products (AGEs), especially during exposure to heat. AGEs are considered to be toxic in vivo due to their pronounced local and systemic inflammatory effects. At high temperatures, these reactions have been mostly investigated at the amino acid level. Here, we studied the formation of arginine-related AGEs in peptides under conditions simulating household cooking at physiological d-glucose concentrations. High quantities of AGE-modified peptides were produced within 15 min, especially glyoxal-derived products. The intermediately formed dihydroxy-imidazolidine yielded glyoxal- (Glarg) and methylglyoxal-derived hydro-imidazolinones (MG-H), with Glarg being further degraded to carboxymethyl-l-arginine (CMA). Carboxyethyl-l-arginine was not detected. The formation rates and yields were strongly increased in the presence of physiologically relevant concentrations of Fe(II)-ions and ascorbate. A nearby histidine residue increased the content of AGEs, whereas glutamic acid significantly reduced the CMA levels.


Journal of Mass Spectrometry | 2015

Specific tandem mass spectrometric detection of AGE‐modified arginine residues in peptides

Rico Schmidt; David Böhme; David Singer; Andrej Frolov

Glycation is a non-enzymatic reaction of protein amino and guanidino groups with reducing sugars or dicarbonyl products of their oxidative degradation. Modification of arginine residues by dicarbonyls such as glyoxal and methylglyoxal results in formation of advanced glycation end-products (AGEs). In mammals, these modifications impact in diabetes mellitus, uremia, atherosclerosis and ageing. However, due to the low abundance of individual AGE-peptides in enzymatic digests, these species cannot be efficiently detected by LC-ESI-MS-based data-dependent acquisition (DDA) experiments. Here we report an analytical workflow that overcomes this limitation. We describe fragmentation patterns of synthetic AGE-peptides and assignment of modification-specific signals required for unambiguous structure retrieval. Most intense signals were those corresponding to unique fragment ions with m/z 152.1 and 166.1, observed in the tandem mass spectra of peptides, containing glyoxal- and methylglyoxal-derived hydroimidazolone AGEs, respectively. To detect such peptides, specific and sensitive precursor ion scanning methods were established for these signals. Further, these precursor ion scans were incorporated in conventional bottom-up proteomic approach based on data-dependent acquisition (DDA) LC-MS/MS experiments. The method was successfully applied for the analysis of human serum albumin (HSA) and human plasma protein tryptic digest with subsequent structure confirmation by targeted LC-MS/MS (DDA). Altogether 44 hydroimidazolone- and dihydroxyimidazolidine-derived peptides representing 42 AGE-modified proteins were identified in plasma digests obtained from type 2 diabetes mellitus (T2DM) patients.


Journal of Biomedical Materials Research Part B | 2009

Carboxymethylation of the Fibrillar Collagen With Respect to Formation of Hydroxyapatite

Hermann Ehrlich; Thomas Hanke; Paul Simon; René Born; Christiane Fischer; Andrej Frolov; Tobias Langrock; Ralf Hoffmann; Uwe Schwarzenbolz; Thomas Henle; Vasily V. Bazhenov; Hartmut Worch

Control over crystal growth by acidic matrix macromolecules is an important process in the formation of many mineralized tissues. Highly acidic macromolecules are postulated intermediates in tissue mineralization, because they sequester many calcium ions and occur in high concentrations at mineralizing foci in distantly related organisms. A prerequisite for biomineralization is the ability of cations like calcium to bind to proteins and to result in concert with appropriate anions like phosphates or carbonates in composite materials with bone-like properties. For this mineralization process the proteins have to be modified with respect to acidification. In this study we modified the protein collagen by carboxymethylation using glucuronic acid. Our experiments showed unambigously, that N(epsilon)-carboxymethyllysine is the major product of the in vitro nonenzymatic glycation reaction between glucuronic acid and collagen. We hypothesized that the function of biomimetically carboxymethylated collagen is to increase the local concentration of corresponding ions so that a critical nucleus of ions can be formed, leading to the formation of the mineral. Thus, the self-organization of HAP nanocrystals on and within collagen fibrils was intensified by carboxymethylation.

Collaboration


Dive into the Andrej Frolov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tatiana Bilova

Saint Petersburg State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elena Tarakhovskaya

Saint Petersburg State University

View shared research outputs
Top Co-Authors

Avatar

Galina Smolikova

Saint Petersburg State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge