Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andreja Kovač is active.

Publication


Featured researches published by Andreja Kovač.


Fems Microbiology Reviews | 2008

Cytoplasmic steps of peptidoglycan biosynthesis

Hélène Barreteau; Andreja Kovač; Audrey Boniface; Matej Sova; Stanislav Gobec; Didier Blanot

The biosynthesis of bacterial cell wall peptidoglycan is a complex process that involves enzyme reactions that take place in the cytoplasm (synthesis of the nucleotide precursors) and on the inner side (synthesis of lipid-linked intermediates) and outer side (polymerization reactions) of the cytoplasmic membrane. This review deals with the cytoplasmic steps of peptidoglycan biosynthesis, which can be divided into four sets of reactions that lead to the syntheses of (1) UDP-N-acetylglucosamine from fructose 6-phosphate, (2) UDP-N-acetylmuramic acid from UDP-N-acetylglucosamine, (3) UDP-N-acetylmuramyl-pentapeptide from UDP-N-acetylmuramic acid and (4) D-glutamic acid and dipeptide D-alanyl-D-alanine. Recent data concerning the different enzymes involved are presented. Moreover, special attention is given to (1) the chemical and enzymatic synthesis of the nucleotide precursor substrates that are not commercially available and (2) the search for specific inhibitors that could act as antibacterial compounds.


Journal of Medicinal Chemistry | 2010

Discovery of Novel 5-Benzylidenerhodanine and 5-Benzylidenethiazolidine-2,4-dione Inhibitors of MurD Ligase

Nace Zidar; Tihomir Tomašič; Roman Šink; Veronika Rupnik; Andreja Kovač; Samo Turk; Delphine Patin; Didier Blanot; Carlos Contreras Martel; Andréa Dessen; Manica Müller Premru; Anamarija Zega; Stanislav Gobec; Lucija Peterlin Mašič; Danijel Kikelj

We have designed, synthesized, and evaluated 5-benzylidenerhodanine- and 5-benzylidenethiazolidine-2,4-dione-based compounds as inhibitors of bacterial enzyme MurD with E. coli IC(50) in the range 45-206 μM. The high-resolution crystal structure of MurD in complex with (R,Z)-2-(3-[{4-([2,4-dioxothiazolidin-5-ylidene]methyl)phenylamino}methyl)benzamido)pentanedioic acid [(R)-32] revealed details of the binding mode of the inhibitor within the active site and provides a good foundation for structure-based design of a novel generation of MurD inhibitors.


Bioorganic & Medicinal Chemistry Letters | 2009

Discovery of novel benzene 1,3-dicarboxylic acid inhibitors of bacterial MurD and MurE ligases by structure-based virtual screening approach

Andrej Perdih; Andreja Kovač; Gerhard Wolber; Didier Blanot; Stanislav Gobec; Tom Solmajer

The peptidoglycan biosynthetic pathway provides an array of potential targets for antibacterial drug design, attractive especially with respect to selective toxicity. Within this pathway, the members of the Mur ligase family are considered as promising emerging targets for novel antibacterial drug design. Based on the available MurD crystal structures co-crystallised with N-sulfonyl glutamic acid inhibitors, a virtual screening campaign was performed, combining three-dimensional structure-based pharmacophores and molecular docking calculations. A novel class of glutamic acid surrogates-benzene 1,3-dicarboxylic acid derivatives-were identified and compounds 14 and 16 found to possess dual MurD and MurE inhibitory activity.


ChemMedChem | 2010

5-Benzylidenethiazolidin-4-ones as Multitarget Inhibitors of Bacterial Mur Ligases

Tihomir Tomašič; Nace Zidar; Andreja Kovač; Samo Turk; Mihael Simčič; Didier Blanot; Manica Müller-Premru; Metka Filipič; Simona Golic Grdadolnik; Anamarija Zega; Marko Anderluh; Stanislav Gobec; Danijel Kikelj; Lucija Peterlin Mašič

Mur ligases participate in the intracellular path of bacterial peptidoglycan biosynthesis and constitute attractive, although so far underexploited, targets for antibacterial drug discovery. A series of hydroxy‐substituted 5‐benzylidenethiazolidin‐4‐ones were synthesized and tested as inhibitors of Mur ligases. The most potent compound 5 a was active against MurD–F with IC50 values between 2 and 6 μm, making it a promising multitarget inhibitor of Mur ligases. Antibacterial activity against different strains, inhibitory activity against protein kinases, mutagenicity and genotoxicity of 5 a were also investigated, and kinetic and NMR studies were conducted.


Journal of Medicinal Chemistry | 2008

Discovery of New Inhibitors of d-Alanine:d-Alanine Ligase by Structure-Based Virtual Screening†

Andreja Kovač; Janez Konc; Blaž Vehar; Julieanne M. Bostock; Ian Chopra; Dusanka Janezic; Stanislav Gobec

The terminal dipeptide, D-Ala-D-Ala, of the peptidoglycan precursor UDPMurNAc-pentapetide is a crucial building block involved in peptidoglycan cross-linking. It is synthesized in the bacterial cytoplasm by the enzyme d-alanine:d-alanine ligase (Ddl). Structure-based virtual screening of the NCI diversity set of almost 2000 compounds was performed with a DdlB isoform from Escherichia coli using the computational tool AutoDock 4.0. The 130 best-ranked compounds from this screen were tested in an in vitro assay for their inhibition of E. coli DdlB. Three compounds were identified that inhibit the enzyme with K(i) values in micromolar range. Two of these also have promising antibacterial activities against Gram-positive and Gram-negative bacteria.


Bioorganic & Medicinal Chemistry Letters | 2009

Synthesis and biological evaluation of new glutamic acid-based inhibitors of MurD ligase

Tihomir Tomašič; Nace Zidar; Veronika Rupnik; Andreja Kovač; Didier Blanot; Stanislav Gobec; Danijel Kikelj; Lucija Peterlin Mašič

Mur ligases catalyze the biosynthesis of the UDP-MurNAc-pentapeptide precursor of peptidoglycan, an essential polymer of bacterial cell-wall. They constitute attractive targets for the development of novel antibacterial agents. Here we report on the synthesis of a series of 2,4-diaminoquinazolines, quinazoline-2,4(1H,3H)-diones, 5-benzylidenerhodanines and 5-benzylidenethiazolidine-2,4-diones and their inhibitory activities against MurD from Escherichia coli. Compounds (R)-27 and (S)-27 showed inhibitory activity against MurD with IC(50) values of 174 and 206 microM, respectively, which makes them promising starting points for optimization.


Journal of Medicinal Chemistry | 2011

Structure-Based Design of a New Series of D- Glutamic Acid-Based Inhibitors of Bacterial Udp-N-Acetylmuramoyl-L-Alanine:D-Glutamate Ligase (Murd).

Tihomir Tomašič; Nace Zidar; Roman Šink; Andreja Kovač; Didier Blanot; Carlos Contreras-Martel; Andréa Dessen; Manica Müller-Premru; Anamarija Zega; Stanislav Gobec; Danijel Kikelj; Lucija Peterlin Mašič

MurD ligase is one of the key enzymes participating in the intracellular steps of peptidoglycan biosynthesis and constitutes a viable target in the search for novel antibacterial drugs to combat bacterial drug-resistance. We have designed, synthesized, and evaluated a new series of D-glutamic acid-based Escherichia coli MurD inhibitors incorporating the 5-benzylidenethiazolidin-4-one scaffold. The crystal structure of 16 in the MurD active site has provided a good starting point for the design of structurally optimized inhibitors 73-75 endowed with improved MurD inhibitory potency (IC(50) between 3 and 7 μM). Inhibitors 74 and 75 showed weak activity against Gram-positive Staphylococcus aureus and Enterococcus faecalis. Compounds 73-75, with IC(50) values in the low micromolar range, represent the most potent D-Glu-based MurD inhibitors reported to date.


European Journal of Medicinal Chemistry | 2011

New 5-benzylidenethiazolidin-4-one inhibitors of bacterial MurD ligase: Design, synthesis, crystal structures, and biological evaluation

Nace Zidar; Tihomir Tomašič; Roman Šink; Andreja Kovač; Delphine Patin; Didier Blanot; Carlos Contreras-Martel; Andréa Dessen; Manica Müller Premru; Anamarija Zega; Stanislav Gobec; Lucija Peterlin Mašič; Danijel Kikelj

Mur ligases (MurC-MurF), a group of bacterial enzymes that catalyze four consecutive steps in the formation of cytoplasmic peptidoglycan precursor, are becoming increasingly adopted as targets in antibacterial drug design. Based on the crystal structure of MurD cocrystallized with thiazolidine-2,4-dione inhibitor I, we have designed, synthesized, and evaluated a series of improved glutamic acid containing 5-benzylidenerhodanine and 5-benzylidenethiazolidine-2,4-dione inhibitors of MurD with IC(50) values up to 28 μM. Inhibitor 37, with an IC(50) of 34 μM, displays a weak antibacterial activity against S. aureus ATCC 29213 and E. faecalis ATCC 29212 with minimal inhibitory concentrations of 128 μg/mL. High-resolution crystal structures of MurD in complex with two new inhibitors (compounds 23 and 51) reveal details of their binding modes within the active site and provide valuable information for further structure-based optimization.


ChemMedChem | 2008

Synthesis and Biological Evaluation of N‐Acylhydrazones as Inhibitors of MurC and MurD Ligases

Roman Šink; Andreja Kovač; Tihomir Tomašič; Veronika Rupnik; Audrey Boniface; Julieanne M. Bostock; Ian Chopra; Didier Blanot; Lucija Peterlin Mašič; Stanislav Gobec; Anamarija Zega

The Mur ligases have an essential role in the intracellular biosynthesis of bacterial peptidoglycan, and they represent attractive targets for the design of novel antibacterials. A series of compounds with an N‐acylhydrazone scaffold were synthesized and screened for inhibition of the MurC and MurD enzymes from Escherichia coli. Compounds with micromolar inhibitory activities against both MurC and MurD were identified, and some of them also showed antibacterial activity.


Biochimie | 2010

Purification and biochemical characterization of Mur ligases from Staphylococcus aureus.

Delphine Patin; Audrey Boniface; Andreja Kovač; Mireille Hervé; Sébastien Dementin; Hélène Barreteau; Dominique Mengin-Lecreulx; Didier Blanot

The Mur ligases (MurC, MurD, MurE and MurF) catalyze the stepwise synthesis of the UDP-N-acetylmuramoyl-pentapeptide precursor of peptidoglycan. The murC, murD, murE and murF genes from Staphylococcus aureus, a major pathogen, were cloned and the corresponding proteins were overproduced in Escherichia coli and purified as His(6)-tagged forms. Their biochemical properties were investigated and compared to those of the E. coli enzymes. Staphylococcal MurC accepted L-Ala, L-Ser and Gly as substrates, as the E. coli enzyme does, with a strong preference for L-Ala. S. aureus MurE was very specific for L-lysine and in particular did not accept meso-diaminopimelic acid as a substrate. This mirrors the E. coli MurE specificity, for which meso-diaminopimelic acid is the preferred substrate and L-lysine a very poor one. S. aureus MurF appeared less specific and accepted both forms (L-lysine and meso-diaminopimelic acid) of UDP-MurNAc-tripeptide, as the E. coli MurF does. The inverse and strict substrate specificities of the two MurE orthologues is thus responsible for the presence of exclusively meso-diaminopimelic acid and L-lysine at the third position of the peptide in the peptidoglycans of E. coli and S. aureus, respectively. The specific activities of the four Mur ligases were also determined in crude extracts of S. aureus and compared to cell requirements for peptidoglycan biosynthesis.

Collaboration


Dive into the Andreja Kovač's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Didier Blanot

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matej Sova

University of Ljubljana

View shared research outputs
Top Co-Authors

Avatar

Nace Zidar

University of Ljubljana

View shared research outputs
Top Co-Authors

Avatar

Samo Turk

University of Ljubljana

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge