Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andres Baena is active.

Publication


Featured researches published by Andres Baena.


Journal of Clinical Investigation | 2011

Mycobacteria release active membrane vesicles that modulate immune responses in a TLR2-dependent manner in mice

Rafael Prados-Rosales; Andres Baena; Luis R. Martinez; Jose L. Luque-Garcia; Rainer Kalscheuer; Usha Veeraraghavan; Carmen Cámara; Joshua D. Nosanchuk; Gurdyal S. Besra; Bing Chen; Juan Jimenez; Aharona Glatman-Freedman; William R. Jacobs; Steven A. Porcelli; Arturo Casadevall

Bacteria naturally release membrane vesicles (MVs) under a variety of growth environments. Their production is associated with virulence due to their capacity to concentrate toxins and immunomodulatory molecules. In this report, we show that the 2 medically important species of mycobacteria, Mycobacterium tuberculosis and Mycobacterium bovis bacille Calmette-Guérin, release MVs when growing in both liquid culture and within murine phagocytic cells in vitro and in vivo. We documented MV production in a variety of virulent and nonvirulent mycobacterial species, indicating that release of MVs is a property conserved among mycobacterial species. Extensive proteomic analysis revealed that only MVs from the virulent strains contained TLR2 lipoprotein agonists. The interaction of MVs with macrophages isolated from mice stimulated the release of cytokines and chemokines in a TLR2-dependent fashion, and infusion of MVs into mouse lungs elicited a florid inflammatory response in WT but not TLR2-deficient mice. When MVs were administered to mice before M. tuberculosis pulmonary infection, an accelerated local inflammatory response with increased bacterial replication was seen in the lungs and spleens. Our results provide strong evidence that actively released mycobacterial vesicles are a delivery mechanism for immunologically active molecules that contribute to mycobacterial virulence. These findings may open up new horizons for understanding the pathogenesis of tuberculosis and developing vaccines.


Immunity | 2009

Kinetics and Cellular Site of Glycolipid Loading Control the Outcome of Natural Killer T Cell Activation

Jin S. Im; Pooja Arora; Gabriel Bricard; Alberto Molano; Manjunatha M. Venkataswamy; Ian Baine; Elliot S. Jerud; Michael F. Goldberg; Andres Baena; Karl O. A. Yu; Rachel M. Ndonye; Amy R. Howell; Weiming Yuan; Peter Cresswell; Young-Tae Chang; Petr A. Illarionov; Gurdyal S. Besra; Steven A. Porcelli

Summary CD1d-restricted natural killer T cells (NKT cells) possess a wide range of effector and regulatory activities that are related to their ability to secrete both T helper 1 (Th1) cell- and Th2 cell-type cytokines. We analyzed presentation of NKT cell activating α galactosylceramide (αGalCer) analogs that give predominantly Th2 cell-type cytokine responses to determine how ligand structure controls the outcome of NKT cell activation. Using a monoclonal antibody specific for αGalCer-CD1d complexes to visualize and quantitate glycolipid presentation, we found that Th2 cell-type cytokine-biasing ligands were characterized by rapid and direct loading of cell-surface CD1d proteins. Complexes formed by association of these Th2 cell-type cytokine-biasing αGalCer analogs with CD1d showed a distinctive exclusion from ganglioside-enriched, detergent-resistant plasma membrane microdomains of antigen-presenting cells. These findings help to explain how subtle alterations in glycolipid ligand structure can control the balance of proinflammatory and anti-inflammatory activities of NKT cells.


Tissue Antigens | 2009

Evasion and subversion of antigen presentation by Mycobacterium tuberculosis

Andres Baena; Steven A. Porcelli

Mycobacterium tuberculosis is one of the most successful of human pathogens and has acquired the ability to establish latent or progressive infection and persist even in the presence of a fully functioning immune system. The ability of M. tuberculosis to avoid immune-mediated clearance is likely to reflect a highly evolved and coordinated program of immune evasion strategies, including some that interfere with antigen presentation to prevent or alter the quality of T-cell responses. Here, we review an extensive array of published studies supporting the view that antigen presentation pathways are targeted at many points by pathogenic mycobacteria. These studies show the multiple potential mechanisms by which M. tuberculosis may actively inhibit, subvert or otherwise modulate antigen presentation by major histocompatibility complex class I, class II and CD1 molecules. Unraveling the mechanisms by which M. tuberculosis evades or modulates antigen presentation is of critical importance for the development of more effective new vaccines based on live attenuated mycobacterial strains.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Antigen-specific and persistent tuberculin anergy in a cohort of pulmonary tuberculosis patients from rural Cambodia

Julio Delgado; Eunice Y. Tsai; Sok Thim; Andres Baena; Vassiliki A. Boussiotis; Jean Marc Reynes; Sun Sath; Pierre Grosjean; Edmond J. Yunis; Anne E. Goldfeld

Purified protein derivative (PPD) skin testing is used to identify persons infected with Mycobacterium tuberculosis (Mtb) and to assess cell-mediated immune responses to Mtb. However, lack of skin induration to intradermal injection of PPD or PPD anergy is observed in a subset of patients with active tuberculosis (TB). To investigate the sensitivity and persistence of PPD reactivity and its in vitro correlates during active TB disease and after successful chemotherapy, we evaluated the distribution of skin size induration after intradermal injection of PPD among 364 pulmonary TB patients in Cambodia. A subset of 25 pulmonary TB patients who had a positive skin reaction to mumps and/or candida antigens showed persistent anergy to PPD after successful completion of TB therapy. Strikingly, in vitro stimulation of T cells from persistently anergic TB patients with mumps but not PPD resulted in T cell proliferation, and lower levels of IL-2 and IFN-γ and higher levels of IL-10 were detected in PPD-stimulated cellular cultures from PPD-anergic as compared with PPD-reactive pulmonary TB patients. These results show that anergy to PPD is antigen-specific and persistent in a subset of immunocompetent pulmonary TB patients and is characterized by antigen-specific impaired T cell proliferative responses and a distinct pattern of cytokine production including reduced levels of IL-2.


Immunity | 2014

A Single Subset of Dendritic Cells Controls the Cytokine Bias of Natural Killer T Cell Responses to Diverse Glycolipid Antigens

Pooja Arora; Andres Baena; Karl O. A. Yu; Neeraj Kumar Saini; Shalu Sharma Kharkwal; Michael F. Goldberg; Shajo Kunnath-Velayudhan; Leandro J. Carreño; Manjunatha M. Venkataswamy; J J Kim; Eszter Lazar-Molnar; Grégoire Lauvau; Young-Tae Chang; Zheng Xia Liu; Robert Bittman; Aymen Al-Shamkhani; Liam R. Cox; Peter J. Jervis; Natacha Veerapen; Gurdyal S. Besra; Steven A. Porcelli

Summary Many hematopoietic cell types express CD1d and are capable of presenting glycolipid antigens to invariant natural killer T cells (iNKT cells). However, the question of which cells are the principal presenters of glycolipid antigens in vivo remains controversial, and it has been suggested that this might vary depending on the structure of a particular glycolipid antigen. Here we have shown that a single type of cell, the CD8α+ DEC-205+ dendritic cell, was mainly responsible for capturing and presenting a variety of different glycolipid antigens, including multiple forms of α-galactosylceramide that stimulate widely divergent cytokine responses. After glycolipid presentation, these dendritic cells rapidly altered their expression of various costimulatory and coinhibitory molecules in a manner that was dependent on the structure of the antigen. These findings show flexibility in the outcome of two-way communication between CD8α+ dendritic cells and iNKT cells, providing a mechanism for biasing toward either proinflammatory or anti-inflammatory responses.


Journal of Immunology | 2006

Aspartic Acid Homozygosity at Codon 57 of HLA-DQ β Is Associated with Susceptibility to Pulmonary Tuberculosis in Cambodia

Julio Delgado; Andres Baena; Sok Thim; Anne E. Goldfeld

After infection with Mycobacterium tuberculosis, clinical disease usually remains latent, contained by the host immune response. Although polymorphisms of HLA loci have been hypothesized to play a major role in the breakdown of latency, a functional link has not been established. Molecular-based HLA-typing methods were used to test the association of sets of HLA alleles encoding an aspartic acid at codon 57 of the HLA-DQ β-chain (HLA-DQ β57-Asp) with susceptibility to tuberculosis in a cohort of 436 pulmonary tuberculosis patients and 107 healthy controls from Cambodia. HLA class II null cells were transduced with HLA-DQ β57-Asp or HLA-DQ β57-Ala and evaluated for their ability to bind peptides from two immunogenic M. tuberculosis specific proteins, ESAT-6 and CFP-10. In this study, we report a highly significant association between progressive pulmonary tuberculosis and homozygosity for HLA-DQ β57-Asp alleles. The presence of HLA-DQ β57-Asp resulted in a significantly reduced ability to bind a peptide from the central region of the ESAT-6 protein. Furthermore, when this peptide was presented by an HLA-DQ β57-Asp allele, Ag-specific IFN-γ production from CD4+ T cells from tuberculosis patients was significantly less than when this peptide was presented by an HLA-DQ-β allele encoding an alanine at codon 57. Multiple genetic loci and ethnic-specific factors are likely involved in the human immune response to tuberculosis. The data presented here provide a functional explanation for a highly significant association between an HLA polymorphism and tuberculosis in a highly characterized group of patients with susceptibility to progressive tuberculosis infection in Cambodia.


Mbio | 2014

Mycobacterial Membrane Vesicles Administered Systemically in Mice Induce a Protective Immune Response to Surface Compartments of Mycobacterium tuberculosis

Rafael Prados-Rosales; Leandro J. Carreño; Ana Batista-Gonzalez; Andres Baena; Manjunatha M. Venkataswamy; Jiayong Xu; Xiaobo Yu; Garrick Wallstrom; D. Mitchell Magee; Joshua LaBaer; Jacqueline M. Achkar; William R. Jacobs; John Chan; Steven A. Porcelli; Arturo Casadevall

ABSTRACT Pathogenic and nonpathogenic species of bacteria and fungi release membrane vesicles (MV), containing proteins, polysaccharides, and lipids, into the extracellular milieu. Previously, we demonstrated that several mycobacterial species, including bacillus Calmette-Guerin (BCG) and Mycobacterium tuberculosis, release MV containing lipids and proteins that subvert host immune response in a Toll-like receptor 2 (TLR2)-dependent manner (R. Prados-Rosales et al., J. Clin. Invest. 121:1471–1483, 2011, doi:10.1172/JCI44261). In this work, we analyzed the vaccine potential of MV in a mouse model and compared the effects of immunization with MV to those of standard BCG vaccination. Immunization with MV from BCG or M. tuberculosis elicited a mixed humoral and cellular response directed to both membrane and cell wall components, such as lipoproteins. However, only vaccination with M. tuberculosis MV was able to protect as well as live BCG immunization. M. tuberculosis MV boosted BCG vaccine efficacy. In summary, MV are highly immunogenic without adjuvants and elicit immune responses comparable to those achieved with BCG in protection against M. tuberculosis. IMPORTANCE This work offers a new vaccine approach against tuberculosis using mycobacterial MV. Mycobacterium MV are a naturally released product combining immunogenic antigens in the context of a lipid structure. The fact that MV do not need adjuvants and elicit protection comparable to that elicited by the BCG vaccine encourages vaccine approaches that combine protein antigens and lipids. Consequently, mycobacterium MV establish a new type of vaccine formulation. This work offers a new vaccine approach against tuberculosis using mycobacterial MV. Mycobacterium MV are a naturally released product combining immunogenic antigens in the context of a lipid structure. The fact that MV do not need adjuvants and elicit protection comparable to that elicited by the BCG vaccine encourages vaccine approaches that combine protein antigens and lipids. Consequently, mycobacterium MV establish a new type of vaccine formulation.


Nature microbiology | 2016

Suppression of autophagy and antigen presentation by Mycobacterium tuberculosis PE_PGRS47.

Neeraj Kumar Saini; Andres Baena; Tony W. Ng; Manjunatha M. Venkataswamy; Steven C. Kennedy; Shajo Kunnath-Velayudhan; Leandro J. Carreño; Jiayong Xu; John Chan; Michelle H. Larsen; William R. Jacobs; Steven A. Porcelli

Suppression of major histocompatibility complex (MHC) class II antigen presentation is believed to be among the major mechanisms used by Mycobacterium tuberculosis to escape protective host immune responses. Through a genome-wide screen for the genetic loci of M. tuberculosis that inhibit MHC class II-restricted antigen presentation by mycobacteria-infected dendritic cells, we identified the PE_PGRS47 protein as one of the responsible factors. Targeted disruption of the PE_PGRS47 (Rv2741) gene led to attenuated growth of M. tuberculosis in vitro and in vivo, and a PE_PGRS47 mutant showed enhanced MHC class II-restricted antigen presentation during in vivo infection of mice. Analysis of the effects of deletion or over-expression of PE_PGRS47 implicated this protein in the inhibition of autophagy in infected host phagocytes. Our findings identify PE_PGRS47 as a functionally relevant, non-redundant bacterial factor in the modulation of innate and adaptive immunity by M. tuberculosis, suggesting strategies for improving antigen presentation and the generation of protective immunity during vaccination or infection.


Journal of Immunology | 2008

Large Scale Mass Spectrometric Profiling of Peptides Eluted from HLA Molecules Reveals N-Terminal-Extended Peptide Motifs

Hernando Escobar; David K. Crockett; Eduardo Reyes-Vargas; Andres Baena; Alan L. Rockwood; Peter E. Jensen; Julio Delgado

The majority of >2000 HLA class I molecules can be clustered according to overlapping peptide binding specificities or motifs recognized by CD8+ T cells. HLA class I motifs are classified based on the specificity of residues located in the P2 and the C-terminal positions of the peptide. However, it has been suggested that other positions might be relevant for peptide binding to HLA class I molecules and therefore be used for further characterization of HLA class I motifs. In this study we performed large-scale sequencing of endogenous peptides eluted from K562 cells (HLA class I null) made to express a single HLA molecule from HLA-B*3501, -B*3502, -B*3503, -B*3504, -B*3506, or -B*3508. Using sequence data from >1,000 peptides, we characterized novel peptide motifs that include dominant anchor residues extending to all positions in the peptide. The length distribution of HLA-B35-bound peptides included peptides of up to 15 residues. Remarkably, we determined that some peptides longer than 11 residues represented N-terminal-extended peptides containing an appropriate HLA-B35 peptide motif. These results provide evidence for the occurrence of endogenous N-terminal-extended peptide-HLA class I configurations. In addition, these results expand the knowledge about the identity of anchor positions in HLA class I-associated peptides that can be used for characterization of HLA class I motifs.


Vaccine | 2012

In vitro culture medium influences the vaccine efficacy of Mycobacterium bovis BCG

Manjunatha M. Venkataswamy; Michael F. Goldberg; Andres Baena; John Chan; William R. Jacobs; Steven A. Porcelli

The varied rates of protection induced by Mycobacterium bovis BCG vaccine against tuberculosis has been attributed to many factors such as genetic variability among BCG strains, rapid clearance of BCG in some populations, and different levels of previous exposure of vaccinated populations to environmental mycobacteria. However, the methods and conditions employed to prepare this vaccine for human usage by various manufacturers have not been investigated as potential factors contributing to the variation in vaccine efficacy. A review of the literature indicates discrepancies between the approach for growing BCG vaccine in the laboratory to assess immune responses and protective ability in animal models, and that employed for production of the vaccine for administration to humans. One of the major differences is in the growth medium used for routine propagation in the laboratory and the one used for bulk vaccine production by manufacturers. Here we compared the immunogenicity of the BCG vaccine grown in Middlebrook 7H9 medium, the most commonly used medium in laboratory studies, against that grown in Sauton medium, which is used for growing BCG by most manufacturers. Our results showed clear differences in the behavior of BCG grown in these different culture media. Compared to BCG grown in Middlebrook 7H9 medium, BCG grown in Sauton media was more persistent inside macrophages, more effective at inhibiting apoptosis of infected cells, induced stronger inflammatory responses and stimulated less effective immunity against aerosol challenge with a virulent Mtb strain. These findings suggested that the growth medium used for producing BCG vaccine is an important factor that deserves increased scrutiny in ongoing efforts to produce more consistently effective vaccines against Mtb.

Collaboration


Dive into the Andres Baena's collaboration.

Top Co-Authors

Avatar

Steven A. Porcelli

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne E. Goldfeld

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rafael Prados-Rosales

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael F. Goldberg

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Pooja Arora

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge