Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrés Falcón is active.

Publication


Featured researches published by Andrés Falcón.


Archives of Biochemistry and Biophysics | 2003

Latent phenoloxidase activity and N-terminal amino acid sequence of hemocyanin from Bathynomus giganteus, a primitive crustacean.

Dorothy D Pless; Manuel B. Aguilar; Andrés Falcón; Enrique Lozano-Álvarez; Edgar P. Heimer de la Cotera

N-terminal amino acid sequences for the two hemocyanin subunits from the deep-sea crustacean Bathynomus giganteus have been determined by Edman degradation, providing the first sequence information for a hemocyanin from an isopod. In addition, purified hemocyanin from B. giganteus exhibited phenoloxidase activity in the presence of sodium dodecyl sulfate. Although a natural activator has not yet been identified, a preliminary study of the enzyme indicated a K(m) of 5mM for dopamine and an initial rate of 0.1 micromol per min per mg protein, values consistent with a significant role for this enzyme in the innate immune system of B. giganteus. Moreover, after separation of hemolymph by alkaline polyacrylamide gel electrophoresis, the only detectable phenoloxidase activity coincided with the two hemocyanin subunits. The hemocyanin of this primitive crustacean may fulfill dual functions, both as oxygen carrier and as the phenoloxidase crucial for host defense.


Toxicon | 2001

Electrophysiological and hemolytic activity elicited by the venom of the jellyfish Cassiopea xamachana.

Mónica Torres; Manuel B. Aguilar; Andrés Falcón; Lenin Sánchez; Faisal F.Y. Radwan; Joseph W. Burnett; Edgar P. Heimer de la Cotera; Rogelio O. Arellano

In this study, we determined hemolysis activity in human and sheep erythrocytes, and characterized the electrical responses in Xenopus oocyte membrane elicited by the venom of the jellyfish Cassiopea xamachana (Cx). The Cx venom produced hemolysis in both species, being more potent on human red cells. The electrophysiological study showed that the Cx venom elicited three different responses in the oocytes. One current was generated in all the oocytes tested and corresponded with a slow inward current (I(Cx)) associated with an increase in membrane conductance. I(Cx) was concentration-dependent and had a reversal potential of -10.3+/-0.4 mV. Ionic substitution studies indicated that the conductive pathway was mainly permeable to cations and non-selective. The oocyte membrane resistance was completely recovered after washout of the venom, this suggested that the effect was due to generation of a specific membrane conductance as opposed to a possible non-specific membrane breakdown. A comparative study with three distinct native cationic channels present in the oocyte membrane [i.e. (1) hemi-gap-junction channels, (2) mechanosensitive channels, and (3) the ouabain-sensitive channel activated by palytoxin], showed that I(Cx) might correspond to opening of mechanosensitive channels or to activation of an unknown cationic channel located in the oocyte membrane. The bioactive fraction eliciting I(Cx) were peptides and was separated from two other peptidic hemolytic fractions by chromatography.


Peptides | 2006

Amino acid sequence and biological activity of a γ-conotoxin-like peptide from the worm-hunting snail Conus austini

Alejandro Zugasti-Cruz; María Maillo; Estuardo López-Vera; Andrés Falcón; Edgar P. Heimer de la Cotera; Baldomero M. Olivera; Manuel B. Aguilar

A novel 31-residue toxin, named as7a, was isolated and characterized from the venom of Conus austini, a vermivorous cone snail collected in the western Gulf of Mexico. The complete amino acid sequence, TCKQKGEGCSLDVgammaCCSSSCKPGGPLFDFDC, was determined by automatic Edman sequencing after reduction and alkylation. The sequence shows six Cys residues arranged in the pattern that defines the O-superfamily of conotoxins, and the sequence motif -gammaCCS-, which has only been found in the gamma-conotoxin family. The molecular mass of the native peptide was determined by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry, which confirmed the chemical analyses and suggested a free C-terminus. The purified peptide elicited toxic effects in the freshwater snail Pomacea paludosa after intramuscular injection, but it had no effect when injected intracerebrally into mice. The structural similarity of peptide as7a to other gamma-conotoxins suggests that modulation of pacemaker channels could be responsible for its biological activity.


Peptides | 2008

Conorfamide-Sr2, a gamma-carboxyglutamate-containing FMRFamide-related peptide from the venom of Conus spurius with activity in mice and mollusks

Manuel B. Aguilar; Karen Luna-Ramírez; Daniel Echeverría; Andrés Falcón; Baldomero M. Olivera; Edgar P. Heimer de la Cotera; María Maillo

A novel peptide, conorfamide-Sr2 (CNF-Sr2), was purified from the venom extract of Conus spurius, collected in the Caribbean Sea off the Yucatan Peninsula. Its primary structure was determined by automated Edman degradation and amino acid analysis, and confirmed by electrospray ionization mass spectrometry. Conorfamide-Sr2 contains 12 amino acids and no Cys residues, and it is only the second FMRFamide-related peptide isolated from a venom. Its primary structure GPM gammaDPLgammaIIRI-nh2, (gamma, gamma-carboxyglutamate; -nh2, amidated C-terminus; calculated monoisotopic mass, 1468.72Da; experimental monoisotopic mass, 1468.70Da) shows two features that are unusual among FMRFamide-related peptides (FaRPs, also known as RFamide peptides), namely the novel presence of gamma-carboxyglutamate, and a rather uncommon C-terminal residue, Ile. CNF-Sr2 exhibits paralytic activity in the limpet Patella opea and causes hyperactivity in the freshwater snail Pomacea paludosa and in the mouse. The sequence similarities of CNF-Sr2 with FaRPs from marine and freshwater mollusks and mice might explain its biological effects in these organisms. It also resembles FaRPs from polychaetes (the prey of C. spurius), which suggests a natural biological role. Based on these similarities, CNF-Sr2 might interact with receptors of these three distinct types of FaRPs, G-protein-coupled receptors, Na+ channels activated by FMRFamide (FaNaCs), and acid-sensing ion channels (ASICs). The biological activities of CNF-Sr2 in mollusks and mice make it a potential tool to study molecular targets in these and other organisms.


Peptides | 2007

I-conotoxins in vermivorous species of the West Atlantic: Peptide sr11a from Conus spurius

Manuel B. Aguilar; Estuardo López-Vera; Edgar P. Heimer de la Cotera; Andrés Falcón; Baldomero M. Olivera; María Maillo

Peptide sr11a was purified from the venom of Conus spurius, a vermivorous cone snail collected in the Yucatan Channel, in the Western Atlantic. Its primary structure was determined by automatic Edman degradation after reduction and alkylation. Its molecular mass, as determined by MALDI-TOF mass spectrometry (average mass 3650.77 Da), confirmed the chemical data (calculated average mass, 3651.13 Da). The sequence of peptide sr11a (CRTEGMSCgamma gamma NQQCCWRSCCRGECEAPCRFGP&; gamma, gamma-carboxy-Glu; &, amidated C-terminus) shows eight Cys residues arranged in the pattern that defines the I-superfamily of conotoxins. Peptide sr11a contains two gamma-carboxy-Glu residues, a post-translational modification that has been found in other I-conotoxins from species that live in the West Pacific: r11e from the piscivorous Conus radiatus, and kappa-BtX from the vermivorous Conus betulinus. Peptide sr11a is the eighth I-conotoxin isolated from a Conus venom and the first I-conotoxin from a species from the Western Atlantic. Peptide sr11a produced stiffening of body, limbs and tail when injected intracranially into mice.


Peptides | 2008

Two new 4-Cys conotoxins (framework 14) of the vermivorous snail Conus austini from the Gulf of Mexico with activity in the central nervous system of mice.

Alejandro Zugasti-Cruz; Manuel B. Aguilar; Andrés Falcón; Baldomero M. Olivera; Edgar P. Heimer de la Cotera

As part of continuing studies of the venom components present in Conus austini (syn.: Conus cancellatus), a vermivorous cone snail collected in the western Gulf of Mexico, Mexico, two major peptides, as14a and as14b, were purified and characterized. Their amino acid sequences were determined by automatic Edman sequencing after reduction and alkylation. Their molecular masses, established by matrix-assisted laser desorption ionization time-of-flight mass spectrometry, confirmed the chemical analyses and indicated that as14a and as14b have free C-termini. Each peptide contains 4-Cys residues arranged in a pattern (C-C-C-C, framework 14). The primary structure of as14a is GGVGRCIYNCMNSGGGLNFIQCKTMCY (experimental monoisotopic mass 2883.92Da; calculated monoisotopic mass 2884.20Da), whereas that of as14b is RWDVDQCIYYCLNGVVGYSYTECQTMCT (experimental monoisotopic mass 3308.63Da; calculated monoisotopic mass 3308.34Da). Both purified peptides elicited scratching and grooming activity in mice, and as14b also caused body and rear limb extension and tail curling immediately upon injection. The high sequence similarity of peptide as14a with peptide vil14a from the vermivorous C. villepinii suggests that the former might block K+ channels.


Peptides | 2010

Peptide sr11a from Conus spurius is a novel peptide blocker for Kv1 potassium channels.

Manuel B. Aguilar; Liliana I. Pérez-Reyes; Zinaeli López; Edgar P. Heimer de la Cotera; Andrés Falcón; Cicerón Ayala; Marcelo Galván; Carolina Salvador; Laura I. Escobar

More than a hundred conotoxins are known today and from them, only seven conopeptides have been identified to target voltage-gated potassium channels (Kv). Conotoxin sr11a belongs to the I(2)-superfamily which is characterized by four disulfide bridges and provokes muscle stiffness when injected intracranially in mice. The aim of this work was to test the biological activity of sr11a on recombinant voltage-gated Kv1 potassium channels expressed in Xenopus laevis oocytes. Peptide sr11a was purified by high-performance liquid chromatography from the venom of the vermivorous Conus spurius. We found that peptide sr11a inhibits the delayed rectifiers Kv1.2 and Kv1.6 but had not effect on the slowly inactivating Kv1.3 channel. The functional dyad composed of a basic Lys and a hydrophobic amino acid residue is a crucial structural element, regarding the binding properties and blocking activities of more than a hundred K(+) channel toxins. Peptide sr11a does not contain Lys residues and then, it lacks the functional dyad. Molecular modeling of peptide sr11a reveals the presence of exposed basic residues of Arg and suggests that Arg17 and Arg29 are important on its biological activity.


Peptides | 2009

Structural characterization of five post-translationally modified isomorphs of a novel putative δ-conotoxin from the vermivorous snail Conus delessertii from the Mexican Caribbean Sea

Manuel B. Aguilar; Artemisa Flores-Torres; Cesar V.F. Batista; Andrés Falcón; Estuardo López-Vera; Edgar P. Heimer de la Cotera

A novel peptide, de7b, was isolated from the venom of Conus delessertii, a worm-hunting species collected in the Caribbean Sea off the Yucatan Peninsula. Its primary structure was determined by automated Edman degradation and confirmed by mass spectrometry: it contains 28 amino acids, including six Cys residues. Peptide de7b is the second, O-conotoxin-like peptide isolated from the venom of this species, and it exists in different post-translationally modified isomorphs, some of which contain gamma-carboxy-glutamate (gamma) and/or 4-hydroxy-proline (O) at positions 4, 7, and/or 14. Its primary structure is DCI(P/O)GG(E/gamma)NCDVFR(O/P)YRCCSGYCILLLCA, with molecular masses varying from 3078.6 to 3154.6Da, depending on the number and kind of modified amino acid residues. Peptide de7b shows significant sequence identity with several O-conotoxins purified and biologically characterized from molluscivorous and piscivorous cone snails of the Indo-Pacific region, the tropical Atlantic and Eastern Pacific Oceans, especially with the delta-conotoxins but also with the omega-conotoxins from molluscivorous species, which suggests that it might affect voltage-gated Na(+) or Ca(2+)channels. Peptide de7b has 32% sequence identity with putative gamma-conotoxin de7a, previously characterized from the same species; both peptides contain the same number of amino acid residues and of non-Cys residues between the pairs of consecutive Cys residues. However, these peptides have charge differences at seven positions within the N-terminal half indicating that they might have distinct molecular targets that remain to be identified.


Peptides | 2013

A novel arrangement of Cys residues in a paralytic peptide of Conus cancellatus (jr. syn.: Conus austini), a worm-hunting snail from the Gulf of Mexico

Manuel B. Aguilar; Alejandro Zugasti-Cruz; Andrés Falcón; Cesar V.F. Batista; Baldomero M. Olivera; Edgar P. Heimer de la Cotera

The present study details the purification, the amino acid sequence determination, and a preliminary characterization of the biological effects in mice of a new conotoxin from the venom of Conus cancellatus (jr. syn.: Conus austini), a worm-hunting cone snail collected in the western Gulf of Mexico (Mexico). The 23-amino acid peptide, called as25a, is characterized by the sequence pattern CX1CX2CX8CX1CCX5, which is, for conotoxins, a new arrangement of six cysteines (framework XXV) that form three disulfide bridges. The primary structure (CKCPSCNFNDVTENCKCCIFRQP*; *, amidated C-terminus; calculated monoisotopic mass, 2644.09Da) was established by automated Edman degradation after reduction and alkylation, and MALDI-TOF and ESI mass spectrometry (monoisotopic mass, 2644.12/2644.08Da). Upon intracranial injection in mice, the purified peptide provokes paralysis of the hind limbs and death with a dose of 240 pmol (~0.635 μg, ~24.9 ng/g). In addition, a post-translational variant of this peptide (as25b) was identified and determined to contain two hydroxyproline residues. These peptides may represent a novel conotoxin gene superfamily.


Peptides | 2007

An O-conotoxin from the vermivorous Conus spurius active on mice and mollusks.

Karen Luna-Ramírez; Manuel B. Aguilar; Andrés Falcón; Edgar P. Heimer de la Cotera; Baldomero M. Olivera; María Maillo

Here, we report the purification, amino acid sequence and a preliminary biological characterization of a peptide, sr7a, from the venom of Conus spurius, a vermivorous species collected in the Yucatan Channel, Mexico. The peptide consists of 32 amino acid residues (CLQFGSTCFLGDDDICCSGECFYSGGTFGICS&; &, amidated C-terminus) and contains six cysteines arranged in the pattern (C-C-CC-C-C) that characterizes the O-superfamily of conotoxins. This superfamily includes several pharmacological families (omega-, kappa-, muO-, delta- and gamma-conotoxins) that target Ca(2+), K(+), Na(+) and pacemaker voltage-gated ion channels. Compared with other O-conotoxins that were purified from venoms, this peptide displays sequence similarity with omega-SVIA (from Conus striatus), delta-TxVIA/B (from Conus textile), omega-CVID (from Conus catus) and kappa-PVIIA (from Conus purpurascens). At a dose of 250 pmol, peptide sr7a elicited hyperactivity when injected intracranially into mice and produced paralysis when injected into the pedal muscle of freshwater snails, Pomacea paludosa, but it had no apparent effect after intramuscular injection into the limpet Patella opea or the freshwater fish Lebistes reticulatus.

Collaboration


Dive into the Andrés Falcón's collaboration.

Top Co-Authors

Avatar

Manuel B. Aguilar

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Edgar P. Heimer de la Cotera

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Estuardo López-Vera

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

María Maillo

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Roberto Zamora-Bustillos

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Alejandro Zugasti-Cruz

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Alejandra Rojas

Autonomous University of Queretaro

View shared research outputs
Top Co-Authors

Avatar

Cesar V.F. Batista

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

César Ibarra-Alvarado

Autonomous University of Queretaro

View shared research outputs
Researchain Logo
Decentralizing Knowledge