Andrés G. Vidal-Gadea
Illinois State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrés G. Vidal-Gadea.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Andrés G. Vidal-Gadea; Stephen Topper; Layla Young; Ashley Crisp; Leah Kressin; Erin Elbel; Thomas Maples; Martin Brauner; Karen Erbguth; Abram Axelrod; Alexander Gottschalk; Dionicio Siegel; Jonathan T. Pierce-Shimomura
Many animals, including humans, select alternate forms of motion (gaits) to move efficiently in different environments. However, it is unclear whether primitive animals, such as nematodes, also use this strategy. We used a multifaceted approach to study how the nematode Caenorhabditis elegans freely moves into and out of water. We demonstrate that C. elegans uses biogenic amines to switch between distinct crawling and swimming gaits. Dopamine is necessary and sufficient to initiate and maintain crawling after swimming. Serotonin is necessary and sufficient to transition from crawling to swimming and to inhibit a set of crawl-specific behaviors. Further study of locomotory switching in C. elegans and its dependence on biogenic amines may provide insight into how gait transitions are performed in other animals.
eLife | 2015
Andrés G. Vidal-Gadea; Kristi Ward; Celia Beron; Navid Ghorashian; Sertan Kutal Gökçe; Joshua Russell; Nicholas Truong; Adhishri Parikh; Otilia Gadea; Adela Ben-Yakar; Jonathan T. Pierce-Shimomura
Many organisms spanning from bacteria to mammals orient to the earths magnetic field. For a few animals, central neurons responsive to earth-strength magnetic fields have been identified; however, magnetosensory neurons have yet to be identified in any animal. We show that the nematode Caenorhabditis elegans orients to the earths magnetic field during vertical burrowing migrations. Well-fed worms migrated up, while starved worms migrated down. Populations isolated from around the world, migrated at angles to the magnetic vector that would optimize vertical translation in their native soil, with northern- and southern-hemisphere worms displaying opposite migratory preferences. Magnetic orientation and vertical migrations required the TAX-4 cyclic nucleotide-gated ion channel in the AFD sensory neuron pair. Calcium imaging showed that these neurons respond to magnetic fields even without synaptic input. C. elegans may have adapted magnetic orientation to simplify their vertical burrowing migration by reducing the orientation task from three dimensions to one. DOI: http://dx.doi.org/10.7554/eLife.07493.001
Proceedings of the National Academy of Sciences of the United States of America | 2014
Joshua Russell; Andrés G. Vidal-Gadea; Alex Makay; Carolyn Lanam; Jonathan T. Pierce-Shimomura
Significance Although the neurons and molecules that mediate the sensing of light, odors, tastants, temperature, and pressure have been elucidated, how humidity is sensed in most animals remains unclear. We used the experimental amenability of the model nematode Caenorhabditis elegans to discover a mechanism for sensing humidity. This worm pairs mechanical and thermal information associated with humidity levels via parallel sensory pathways. This strategy, first proposed more than 100 years ago by Thunberg, is notable for not requiring specialized sensory apparatus (or even hair). Because these neurons and their molecular sensors have equivalents represented in diverse animals, the humidity sensation mechanism that we describe here could be used by many animals, including humans. All terrestrial animals must find a proper level of moisture to ensure their health and survival. The cellular-molecular basis for sensing humidity is unknown in most animals, however. We used the model nematode Caenorhabditis elegans to uncover a mechanism for sensing humidity. We found that whereas C. elegans showed no obvious preference for humidity levels under standard culture conditions, worms displayed a strong preference after pairing starvation with different humidity levels, orienting to gradients as shallow as 0.03% relative humidity per millimeter. Cell-specific ablation and rescue experiments demonstrate that orientation to humidity in C. elegans requires the obligatory combination of distinct mechanosensitive and thermosensitive pathways. The mechanosensitive pathway requires a conserved DEG/ENaC/ASIC mechanoreceptor complex in the FLP neuron pair. Because humidity levels influence the hydration of the worm’s cuticle, our results suggest that FLP may convey humidity information by reporting the degree that subcuticular dendritic sensory branches of FLP neurons are stretched by hydration. The thermosensitive pathway requires cGMP-gated channels in the AFD neuron pair. Because humidity levels affect evaporative cooling, AFD may convey humidity information by reporting thermal flux. Thus, humidity sensation arises as a metamodality in C. elegans that requires the integration of parallel mechanosensory and thermosensory pathways. This hygrosensation strategy, first proposed by Thunberg more than 100 y ago, may be conserved because the underlying pathways have cellular and molecular equivalents across a wide range of species, including insects and humans.
Communicative & Integrative Biology | 2012
Andrés G. Vidal-Gadea; Jonathan T. Pierce-Shimomura
Dopamine is an ancient signaling molecule. It is responsible for maintaining the adaptability of behavioral outputs and is found across taxa. The following is a summary of the role of dopamine and the mechanisms of its function and dysfunction. We discuss our recent findings on dopaminergic control of behaviors in C. elegans and discuss its potential implications for work in the fields of C. elegans and Parkinson research.
Worm | 2012
Andrés G. Vidal-Gadea; Scott D. Davis; Lindsay Becker; Jonathan T. Pierce-Shimomura
For animals inhabiting multiple environments, the ability to select appropriate behaviors is crucial as their adaptability is often context dependent. Caenorhabditis elegans uses distinct gaits to move on land and in water. Gait transitions can potentially coordinate behaviors associated with distinct environments. We investigated whether land and water differentially affect the behavioral repertoire of C. elegans. Swimming worms interrupted foraging, feeding, egg-laying and defecation. Exogenous dopamine induced bouts of these land-associated behaviors in water. Our finding that worms do not drink fluid while immersed may explain why higher drug doses are required in water than on land to elicit the same effects. C. elegans is a valid model to study behavioral hierarchies and how environmental pressures alter their balance.
Genes, Brain and Behavior | 2015
C. Beron; Andrés G. Vidal-Gadea; J. Cohn; A. Parikh; G. Hwang; Jonathan T. Pierce-Shimomura
The nematode Caenorhabditis elegans has been a powerful model system for the study of key muscle genes relevant to human neuromuscular function and disorders. The behavioral robustness of C. elegans, however, has hindered its use in the study of certain neuromuscular disorders because many worm models of human disease show only subtle phenotypes while crawling. By contrast, in their natural habitat, C. elegans likely spends much of the time burrowing through the soil matrix. We developed a burrowing assay to challenge motor output by placing worms in agar‐filled pipettes of increasing densities. We find that burrowing involves distinct kinematics and turning strategies from crawling that vary with the properties of the substrate. We show that mutants mimicking Duchenne muscular dystrophy by lacking a functional ortholog of the dystrophin protein, DYS‐1, crawl normally but are severely impaired in burrowing. Muscular degeneration in the dys‐1 mutant is hastened and exacerbated by burrowing, while wild type shows no such damage. To test whether neuromuscular integrity might be compensated genetically in the dys‐1 mutant, we performed a genetic screen and isolated several suppressor mutants with proficient burrowing in a dys‐1 mutant background. Further study of burrowing in C. elegans will enhance the study of diseases affecting neuromuscular integrity, and will provide insights into the natural behavior of this and other nematodes.
Journal of Neurophysiology | 2010
Andrés G. Vidal-Gadea; Xingjian Jing; D.M. Simpson; Oliver P. Dewhirst; Yasuhiro Kondoh; R. Allen; Philip L. Newland
The performance of adaptive behavior relies on continuous sensory feedback to produce relevant modifications to central motor patterns. The femoral chordotonal organ (FeCO) of the legs of the desert locust monitors the movements of the tibia about the femoro-tibial joint. A ventral midline population of spiking local interneurons in the metathoracic ganglia integrates inputs from the FeCO. We used a Wiener kernel cross-correlation method combined with a Gaussian white noise stimulation of the FeCO to completely characterize and model the output dynamics of the ventral midline population of interneurons. A wide range of responses were observed, and interneurons could be classified into three broad groups that received excitatory and inhibitory or principally inhibitory or excitatory synaptic inputs from the FeCO. Interneurons that received mixed inputs also had the greatest linear responses but primarily responded to extension of the tibia and were mostly sensitive to stimulus velocity. Interneurons that received principally inhibitory inputs were sensitive to extension and to joint position. A small group of interneurons received purely excitatory synaptic inputs and were also sensitive to tibial extension. In addition to capturing the linear and nonlinear dynamics of this population of interneurons, first- and second-order Wiener kernels revealed that the dynamics of the interneurons in the population were graded and formed a spectrum of responses whereby the activity of many cells appeared to be required to adequately describe a particular stimulus characteristic, typical of population coding.
Arthropod Structure & Development | 2009
Andrés G. Vidal-Gadea; J.H. Belanger
Decapod crustaceans have been the focus of neuroethological studies for decades. With few exceptions, however, their musculature remains scarcely described. We study the neuroethology of legged locomotion in the portly spider crab, Libinia emarginata (Brachyura, Majoidea), which preferentially walks forward. Majoid crabs are thought to be among the first to have adopted the crab form (carcinification) from lobster-like ancestors, making them interesting subjects for comparative and phylogenetic studies. The radial arrangement of the legs around the thorax, coupled with its unidirectional walking modality makes L. emarginata a good candidate for the presence of anterior and posterior limb specializations. Here we describe the complete muscular anatomy of all the pereopods of L. emarginata and compare our findings with other decapods described in the literature. The number of proximal muscle bundles differs between the anterior and posterior pereopods of L. emarginata. We describe an intersegmental bundle of the flexor muscle similar to the one present in distantly related, forward walking macruran species. The behavioral repertoire, amenability to experimental investigations, and phylogenetic position make spider crabs useful species for the study of the neural control of legged locomotion. To our knowledge, this is the first instance of a complete description and comparison of the musculature in all the locomotor appendages of one species.
bioRxiv | 2018
Andrés G. Vidal-Gadea; Carlos S. Caldart; Chance Bainbridge; Ben Clites; Bridgitte Palacious; Layla Bakhtiari; Vernita Gordon; Diego A. Golombek; Jonathan T. Pierce
Many animals can orient using the earth’s magnetic field. In a recent study, we performed three distinct behavioral assays providing evidence that the nematode Caenorhabditis elegans orients to earth-strength magnetic fields (Vidal-Gadea et al., 2015). In addition to these behavioral assays, we found that magnetic orientation in C. elegans depends on the AFD sensory neurons and conducted subsequent physiological experiments showing that AFD neurons respond to earth-strength magnetic fields. A new behavioral study by Landler et al. (2017) suggested that C. elegans does not orient to magnetic fields and raises issues that cast doubt on our study. Here we reanalyze Lander et al.’s data to show how they appear to have missed observing positive results, and we highlight differences in experimental methods and interpretations that may explain our different results and conclusions. Moreover, we present new data from our labs together with replication by an independent lab to show how temporal and spatial factors influence the unique spatiotemporal trajectory that worms make during magnetotaxis. Together, these findings provide guidance on how to achieve robust magnetotaxis and reinforce our original finding that C. elegans is a suitable model system to study magnetoreception.
Journal of Physiology-paris | 2016
Chance Bainbridge; Anjelica Rodriguez; Andrew Schuler; Michael Cisneros; Andrés G. Vidal-Gadea
The magnetic field of the earth provides many organisms with sufficient information to successfully navigate through their environments. While evidence suggests the widespread use of this sensory modality across many taxa, it remains an understudied sensory modality. We have recently showed that the nematode C. elegans orients to earth-strength magnetic fields using the first pair of described magnetosensory neurons, AFDs. The AFD cells are a pair of ciliated sensory neurons crowned by fifty villi known to be implicated in temperature sensation. We investigated the potential importance of these subcellular structures for the performance of magnetic orientation. We show that ciliary integrity and villi number are essential for magnetic orientation. Mutants with impairments AFD cilia or villi structure failed to orient to magnetic fields. Similarly, C. elegans larvae possessing immature AFD neurons with fewer villi were also unable to orient to magnetic fields. Larvae of every stage however retained the ability to orient to thermal gradients. To our knowledge, this is the first behavioral separation of magnetic and thermal orientation in C. elegans. We conclude that magnetic orientation relies on the function of both cilia and villi in the AFD neurons. The role of villi in multiple sensory transduction pathways involved in the sensory transduction of vectorial stimuli further supports the likely role of the villi of the AFD neurons as the site for magnetic field transduction. The genetic and behavioral tractability of C. elegans make it a promising system for uncovering potentially conserved molecular mechanisms by which animals across taxa detect and orient to magnetic fields.