Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrés Garzón is active.

Publication


Featured researches published by Andrés Garzón.


Journal of Chemical Physics | 2010

Density functional theory study of the optical and electronic properties of oligomers based on phenyl-ethynyl units linked to triazole, thiadiazole, and oxadiazole rings to be used in molecular electronics

Andrés Garzón; José M. Granadino-Roldán; Mónica Moral; Gregorio García; M. Paz Fernández-Liencres; Amparo Navarro; Tomás Peña-Ruiz; Manuel Fernández-Gómez

In the present work, we have studied from a theoretical perspective the geometry and electronic properties of the series of related compounds 2,5-bis(phenylethynyl)-1,3,4-thiadiazole, 2,5-bis(phenylethynyl)-1,3,4-oxadiazole, and 2,5-bis(phenylethynyl)-1,2,4-triazole as candidates for electron-conducting polymers and compounds with desirable (opto)electronic properties. The effect of the ethynyl group (-C[Triple Bond]C-) on the structure and electronic properties was also studied. The influence of planarity on electrical conductivity has been studied by a natural-bond-orbital analysis. The (opto)electronic properties and conducting capability were investigated through the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap, excitation energy, bond length alternation, LUMO energy, electron affinities, and intramolecular reorganization energy. Finally, the evolution of some properties such as optical bandgap and electron affinity with the increase of the number of repeat units in the oligomer chain has been checked.


Physical Chemistry Chemical Physics | 2007

Relative and absolute kinetic studies of 2-butanol and related alcohols with tropospheric Cl atoms

Bernabé Ballesteros; Andrés Garzón; Elena Jiménez; Alberto Notario; José Albaladejo

A newly constructed chamber/Fourier transform infrared system was used to determine the relative rate coefficient, k(i), for the gas-phase reaction of Cl atoms with 2-butanol (k(1)), 2-methyl-2-butanol (k(2)), 3-methyl-2-butanol (k(3)), 2,3-dimethyl-2-butanol (k(4)) and 2-pentanol (k(5)). Experiments were performed at (298 +/- 2) K, in 740 Torr total pressure of synthetic air, and the measured rate coefficients were, in cm(3) molecule(-1) s(-1) units (+/-2sigma): k(1)=(1.32 +/- 0.14) x 10(-10), k(2)=(7.0 +/- 2.2) x 10(-11), k(3)=(1.17 +/- 0.14) x 10(-10), k(4)=(1.03 +/- 0.17) x 10(-10) and k(5)=(2.18 +/- 0.36) x 10(-10), respectively. Also, all the above rate coefficients (except for 2-pentanol) were investigated as a function of temperature (267-384 K) by pulsed laser photolysis-resonance fluorescence (PLP-RF). The obtained kinetic data were used to derive the Arrhenius expressions: k(1)(T)=(6.16 +/- 0.58) x 10(-11)exp[(174 +/- 58)/T], k(2)(T)=(2.48 +/- 0.17) x 10(-11)exp[(328 +/- 42)/T], k(3)(T)=(6.29 +/- 0.57) x 10(-11)exp[(192 +/- 56)/T], and k(4)(T)=(4.80 +/- 0.43) x 10(-11)exp[(221 +/- 56)/T](in units of cm(3) molecule(-1) s(-1) and +/-sigma). Results and mechanism are discussed and compared with the reported reactivity with OH radicals. Some atmospheric implications derived from this study are also reported.


Journal of Chemical Physics | 2009

Theoretical study of the effect of ethynyl group on the structure and electrical properties of phenyl-thiadiazole systems as precursors of electron-conducting materials

José M. Granadino-Roldán; Andrés Garzón; Gregorio García; Tomás Peña-Ruiz; M. Paz Fernández-Liencres; Amparo Navarro; Manuel Fernández-Gómez

2,5-Bis(phenylethynyl)-1,3,4-thiadiazole (PhEtTh) and 2,5-diphenyl-1,3,4-thiadiazole (PhTh) are expected to be building blocks for polymer materials that could be employed to conduct electricity due to their narrow highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) energy gaps. In this work, a theoretical, comparative study about the effect of the ethynyl group on the planarity and electrical conductivity of this kind of systems has been carried out. Thus, several ab initio (Hartree-Fock, Moller-Plesset) and DFT (B3LYP, B3PW91, M05, M05-2X) methods and basis sets (6-31G(*), 6-31G+G(**), 6-311G(**), cc-pVDZ, cc-pVTZ) have been tested. As a result, PhEtTh showed better properties for its use as electric conducting material relative to PhTh due to its smaller HOMO-LUMO gap, as well as its enhanced trend to retain the planarity provided the reduction in steric hindrances that the ethynyl group (-C[triple bond]C-) permits. Solvent effects were also modeled for ethanol and chloroform under the conductor-like polarizable continuum model approximation. Finally, electronic transitions in gas and solution phases were predicted by using TDDFT approximation in order to compare the theoretical lambda(max) with the experimental values reported in literature for both compounds.


Journal of Chemical Physics | 2006

Atmospheric reactions Cl+CH3–(CH2)n–OH (n=0–4): A kinetic and theoretical study

Andrés Garzón; Carlos A. Cuevas; Antonio A. Ceacero; Alberto Notario; José Albaladejo; Manuel Fernández-Gómez

The reactions of Cl with a series of linear alcohols: methanol (k1), ethanol (k2), 1-propanol (k3), 1-butanol (k4), and 1-pentanol (k5) were investigated as a function of temperature in the range of 264-382 K by laser photolysis-resonance fluorescence. The obtained kinetic data were used to derive the following Arrhenius expressions: k1=(3.55+/-0.22)x10(-10) exp[-(559+/-40)T], k2=(5.25+/-0.52)x10(-11) exp[(190+/-68)T], k3=(2.63+/-0.21)x10(-11) exp[(525+/-51)T], k4=(3.12+/-0.31)x10(-11) exp[(548+/-65)T], and k5=(3.97+/-0.48)x10(-11) exp[(533+/-77)T] (in units of cm(3) molecule(-1) s(-1)). To our knowledge, these are the first absolute kinetic data reported for 1-butanol and 1-pentanol and also the first kinetic study as a function of temperature for these two compounds. Results, mechanism, and tropospheric implications are discussed and compared with the reported reactivity with OH radicals. Moreover, a theoretical insight into the mechanisms of these reactions has also been pursued through ab initio Möller-Plesset second-order perturbation treatment calculations with 6-311G** basis sets. Optimized geometries and vibrational frequencies have been obtained for transition states and molecular complexes appearing along the different reaction pathways. Furthermore, molecular energies have been calculated at quadratic configuration interaction with single, double, and triple excitations level in order to get an estimation of the activation energies.


Journal of Chemical Theory and Computation | 2013

A Tuned LRC-DFT Design of Ambipolar Diketopyrrolopyrrole- Containing Quinoidal Molecules Interesting for Molecular Electronics

Gregorio García; José M. Granadino-Roldán; Alfonso Hernández-Laguna; Andrés Garzón; Manuel Fernández-Gómez

This work presents a Density Functional Theory (DFT) study on the charge transport related properties of two quinoidal diketopyrrolopyrrole (DPP) based systems. System A, recently synthesized, shows high efficiency as n-type organic semiconductor material while system B, not synthesized yet, has a linking benzothiadiazole (BT) unit between DPP moieties and would display an ambipolar character. The use of tuned, long-range corrected (LRC) functionals allows one to predict HOMO, LUMO, and charge transport properties for compound A in concordance with those experimentally observed. The use of BT building blocks allows for a conclusion that compound B is expected to display balanced and efficient charge injection along with high mobilities both for holes and electrons, which points to its potential to obtain high performances as an ambipolar semiconductor.


Journal of Agricultural and Food Chemistry | 2014

Mechanistic and kinetic study on the reactions of coumaric acids with reactive oxygen species: a DFT approach.

Andrés Garzón; Iván Bravo; Antonio J. Barbero; José Albaladejo

The mechanism and kinetics of reactions between coumaric acids and a series of reactive oxygen species ((•)OX) was studied through the density functional theory (DFT). H atom abstraction from -OH and -COOH groups and addition to the nonaromatic double bond were the most representative reaction pathways chosen for which free energy barriers and rate constants were calculated within the transition state theory (TST) framework. From these calculations, it was estimated that (•)OH > (•)OCH3 > (•)OOH > (•)OOCH3 is the order of reactivity of (•)OX with any coumaric acid. The highest rate constant was estimated for p-coumaric acid + (•)OH reaction, whereas the rest of the (•)OX species are more reactive with o-coumaric acid. On the basis of the calculated rate constants, H abstraction from a -OH group should be the main mechanism for the reactions involving (•)OCH3, (•)OOH, and (•)OOCH3 radicals. Nevertheless, the addition mechanism, which sometimes is not considered in theoretical studies on reactions of phenolic compounds with electrophilic species, could play a relevant role in the global mechanism of coumaric acid + (•)OH reactions.


Journal of Chemical Physics | 2016

DFT study of the effect of fluorine atoms on the crystal structure and semiconducting properties of poly(arylene-ethynylene) derivatives.

Mónica Moral; Gregorio García; Andrés Garzón; José M. Granadino-Roldán; Manuel Fernández-Gómez

The effect of fluorine substitution on the molecular structure, crystal packing, and n-type semiconducting properties of a set of poly(arylene-ethynylene) polymers based on alternating thiadiazole and phenyl units linked through ethynylene groups has been studied by means of Density Functional Theory. As a result, an enlargement in the interplanar distance between cofacial polymer chains, as well as a decrease of the electronic coupling and electron mobility is predicted. On the other hand, fluorination could facilitate electron injection into the material. A polymer containing both alkoxy pendant chains and fluorine atoms is proposed as a compromise solution between efficiency of electron injection and charge transport within the material.


Journal of Chemical Physics | 2013

Crystal structure and charge transport properties of poly(arylene-ethynylene) derivatives: A DFT approach

Andrés Garzón; José M. Granadino-Roldán; Gregorio García; Mónica Moral; Manuel Fernández-Gómez

In the present study, a series of crystalline poly(arylene-ethynylene) copolymers containing phenylethynylene and 2,5-dialkoxy-phenylethynylene units together with 1,3,4-thiadiazole rings has been modeled by means of periodic calculations. Optimized three-dimensional polymeric structures show interchain distances that are consistent with the experimental values reported for a related polymer. It has also been observed that the presence of pendant alkoxy chains brings on both a further flattening and a separation of the coplanar chains. This fact is linked to a decrease of the interchain cofacial distance. The electron transport character of the polymer crystal structures was assessed through Marcus theory. Electronic coupling between neighboring polymer chains is most influenced by the presence of alkoxy chains giving rise to an expectable enhancement of the electron hopping mobility.


Molecular Physics | 2013

An experimental and theoretical study on the reaction of Cl with CF3CF2CH2OH

Andrés Garzón; María Antiñolo; Mónica Moral; Alberto Notario; Elena Jiménez; Manuel Fernández-Gómez; José Albaladejo

An absolute kinetic study of the reaction of Cl atoms with CF3CF2CH2OH is reported as a function of temperature (T = 268–377 K) and at a total pressure of 100 Torr by the Pulsed Laser Photolysis - Resonance Fluorescence (PLP-RF) technique. No pressure dependence of the rate coefficient for the title reaction, k, was observed between 50 and 200 Torr of He at 298 K. The derived Arrhenius expression in that T-range was k(T) = (2.18 ± 0.24) × 10−12 exp(–(333 ± 34)/T) cm3 molecule−1 s−1, where the uncertainties are ±2σ. From these results, the average tropospheric lifetime of CF3CF2CH2OH due to the reaction with Cl was estimated to be 50 years, considering a global Cl concentration of 103 atom cm−3 and an average temperature of 272 K. Additionally, a theoretical study of the Cl + CF3CF2CH2OH reaction has been carried out by ab initio Möller–Plesset second-order perturbation treatment with 6-311G** basis set to investigate the reaction mechanism. Molecular energies of the different critical points of the potential energy surface have been calculated at QCISD(T) level. The theoretical study shows that the H-atom abstraction from the –CH2– group is the most favourable reaction pathway.


ChemPhysChem | 2010

Atmospheric reactions of (H)- and (D)-fluoroalcohols with chlorine atoms.

Andrés Garzón; Mónica Moral; Alberto Notario; Antonio A. Ceacero-Vega; Manuel Fernández-Gómez; José Albaladejo

The reactions of Cl with a series of fluoroalcohols and deuterated fluoroalcohols, CF(3)CH(2)OH (k(4)), CF(3)CH(OH)CH(3) (k(5)), CF(3)CH(OH)CF(3) (k(6)), CF(3)CH(OD)CF(3) (k(7)) and CF(3)CD(OD)CF(3) (k(8)), are investigated as a function of temperature in the range of 268-378 K by laser photolysis-resonance fluorescence. To our knowledge, only the CF(3)CH(2)OH + Cl reaction has been previously studied from a kinetic point of view. The derived Arrhenius expressions obtained using our kinetic data are: k(4) = (1.79+/-0.17) x 10(-13) exp[(410+/-26)/T], k(5) = (1.20+/-0.11) x 10(-12) exp[(394+/-14)/T], k(6) = (2.32+/-0.18) x 10(-13) exp[-(740+/-12)/T], k(7) = (6.45+/-1.87) x 10(-13) exp[-(1136+/-94)/T] and k(8) = (4.19+/-1.09) x 10(-13) exp[-(1378+/-81)/T] (in units of cm(3) molecule(-1) s(-1) and where errors are +/-sigma). Moreover, a theoretical insight into the mechanisms of these reactions is pursued through ab initio Möller-Plesset second-order perturbation treatment calculations with the 6-311G** basis set. Optimized geometries are obtained for reagents, transition states and molecular complexes appearing along the different reaction pathways. Furthermore, molecular energies are calculated at the quadratic configuration interaction with single, double and triple excitations [QCISD(T)] level to obtain an estimation of the activation energies. Finally, the rate constants are calculated through transition-state theory using Wigners transmission coefficient in order to include the tunnelling-effect corrections.

Collaboration


Dive into the Andrés Garzón's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge