Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrés Gómez-Palacio is active.

Publication


Featured researches published by Andrés Gómez-Palacio.


The Journal of Infectious Diseases | 2012

Benznidazole-Resistance in Trypanosoma cruzi Is a Readily Acquired Trait That Can Arise Independently in a Single Population

Ana Maria Mejia; Belinda S. Hall; Martin C. Taylor; Andrés Gómez-Palacio; Shane R. Wilkinson; Omar Triana-Chávez; John M. Kelly

Benznidazole is the frontline drug used against Trypanosoma cruzi, the causative agent of Chagas disease. However, treatment failures are often reported. Here, we demonstrate that independently acquired mutations in the gene encoding a mitochondrial nitroreductase (TcNTR) can give rise to distinct drug-resistant clones within a single population. Following selection of benznidazole-resistant parasites, all clones examined had lost one of the chromosomes containing the TcNTR gene. Sequence analysis of the remaining TcNTR allele revealed 3 distinct mutant genes in different resistant clones. Expression studies showed that these mutant proteins were unable to activate benznidazole. This correlated with loss of flavin mononucleotide binding. The drug-resistant phenotype could be reversed by transfection with wild-type TcNTR. These results identify TcNTR as a central player in acquired resistance to benznidazole. They also demonstrate that T. cruzi has a propensity to undergo genetic changes that can lead to drug resistance, a finding that has implications for future therapeutic strategies.


PLOS ONE | 2013

Phylogeographic Pattern and Extensive Mitochondrial DNA Divergence Disclose a Species Complex within the Chagas Disease Vector Triatoma dimidiata

Fernando A. Monteiro; Tatiana Peretolchina; Cristiano Lazoski; Kecia Harris; Ellen M. Dotson; Fernando Abad-Franch; Elsa Tamayo; Pamela M. Pennington; Carlota Monroy; Celia Cordon-Rosales; Paz María Salazar-Schettino; Andrés Gómez-Palacio; Mario J. Grijalva; Charles B. Beard; Paula L. Marcet

Background Triatoma dimidiata is among the main vectors of Chagas disease in Latin America. However, and despite important advances, there is no consensus about the taxonomic status of phenotypically divergent T. dimidiata populations, which in most recent papers are regarded as subspecies. Methodology and Findings A total of 126 cyt b sequences (621 bp long) were produced for specimens from across the species range. Forty-seven selected specimens representing the main cyt b clades observed (after a preliminary phylogenetic analysis) were also sequenced for an ND4 fragment (554 bp long) and concatenated with their respective cyt b sequences to produce a combined data set totalling 1175 bp/individual. Bayesian and Maximum-Likelihood phylogenetic analyses of both data sets (cyt b, and cyt b+ND4) disclosed four strongly divergent (all pairwise Kimura 2-parameter distances >0.08), monophyletic groups: Group I occurs from Southern Mexico through Central America into Colombia, with Ecuadorian specimens resembling Nicaraguan material; Group II includes samples from Western-Southwestern Mexico; Group III comprises specimens from the Yucatán peninsula; and Group IV consists of sylvatic samples from Belize. The closely-related, yet formally recognized species T. hegneri from the island of Cozumel falls within the divergence range of the T. dimidiata populations studied. Conclusions We propose that Groups I–IV, as well as T. hegneri, should be regarded as separate species. In the Petén of Guatemala, representatives of Groups I, II, and III occur in sympatry; the absence of haplotypes with intermediate genetic distances, as shown by multimodal mismatch distribution plots, clearly indicates that reproductive barriers actively promote within-group cohesion. Some sylvatic specimens from Belize belong to a different species – likely the basal lineage of the T. dimidiata complex, originated ∼8.25 Mya. The evidence presented here strongly supports the proposition that T. dimidiata is a complex of five cryptic species (Groups I–IV plus T. hegneri) that play different roles as vectors of Chagas disease in the region.


Memorias Do Instituto Oswaldo Cruz | 2013

Chromosomal divergence and evolutionary inferences in Rhodniini based on the chromosomal location of ribosomal genes

Sebastián Pita; Francisco Panzera; Inés Ferrandis; Cleber Galvão; Andrés Gómez-Palacio; Yanina Panzera

In this study, we used fluorescence in situ hybridisation to determine the chromosomal location of 45S rDNA clusters in 10 species of the tribe Rhodniini (Hemiptera: Reduviidae: Triatominae). The results showed striking inter and intraspecific variability, with the location of the rDNA clusters restricted to sex chromosomes with two patterns: either on one (X chromosome) or both sex chromosomes (X and Y chromosomes). This variation occurs within a genus that has an unchanging diploid chromosome number (2n = 22, including 20 autosomes and 2 sex chromosomes) and a similar chromosome size and genomic DNA content, reflecting a genome dynamic not revealed by these chromosome traits. The rDNA variation in closely related species and the intraspecific polymorphism in Rhodnius ecuadoriensis suggested that the chromosomal position of rDNA clusters might be a useful marker to identify recently diverged species or populations. We discuss the ancestral position of ribosomal genes in the tribe Rhodniini and the possible mechanisms involved in the variation of the rDNA clusters, including the loss of rDNA loci on the Y chromosome, transposition and ectopic pairing. The last two processes involve chromosomal exchanges between both sex chromosomes, in contrast to the widely accepted idea that the achiasmatic sex chromosomes of Heteroptera do not interchange sequences.


PLOS Neglected Tropical Diseases | 2012

High-Resolution Melting (HRM) of the Cytochrome B Gene: A Powerful Approach to Identify Blood-Meal Sources in Chagas Disease Vectors

Víctor Hugo Peña; Geysson Javier Fernández; Andrés Gómez-Palacio; Ana María Mejía-Jaramillo; Omar Cantillo; Omar Triana-Chávez

Methods to determine blood-meal sources of hematophagous Triatominae bugs (Chagas disease vectors) are serological or based on PCR employing species-specific primers or heteroduplex analysis, but these are expensive, inaccurate, or problematic when the insect has fed on more than one species. To solve those problems, we developed a technique based on HRM analysis of the mitochondrial gene cytochrome B (Cyt b). This technique recognized 14 species involved in several ecoepidemiological cycles of the transmission of Trypanosoma cruzi and it was suitable with DNA extracted from intestinal content and feces 30 days after feeding, revealing a resolution power that can display mixed feedings. Field samples were analyzed showing blood meal sources corresponding to domestic, peridomiciliary and sylvatic cycles. The technique only requires a single pair of primers that amplify the Cyt b gene in vertebrates and no other standardization, making it quick, easy, relatively inexpensive, and highly accurate.


Memorias Do Instituto Oswaldo Cruz | 2008

Chromosome variability in the Chagas disease vector Rhodnius pallescens (Hemiptera, Reduviidae, Rhodniini)

Andrés Gómez-Palacio; Nicolás Jaramillo-Ocampo; Omar Triana-Chávez; Azael Saldaña; José E. Calzada; Rubén Pérez; Francisco Panzera

Rhodnius pallescens is the main vector of Trypanosoma cruzi in Panama and one of the most relevant secondary vectors in Colombia. Despite the importance of this species, there is limited knowledge about the genetic variability along its geographical distribution. In order to evaluate the degree of karyotype variability we analyzed the meiotic behavior and banding pattern of the chromosomes of 112 males of R. pallescens coming from different regions of Colombia and Panama. Using the C-banding technique we identified two chromosomal patterns or cytotypes characterized by differences in the amount, size and distribution of constitutive heterochromatic regions in the chromosome complement (2n = 20 autosomes plus XY in males). The individuals can be easily classified in each cytotype by the analysis of the chromosomes during first meiotic prophase. The frequencies of the cytotypes are variable according to the geographic origin of the populations. This chromosomal divergence together with morphological data supports the existence of three genetically different populations of R. pallescens and provides new information to understand the distribution dynamics of this species.


PLOS ONE | 2014

Genetic, Cytogenetic and Morphological Trends in the Evolution of the Rhodnius (Triatominae: Rhodniini) Trans-Andean Group

Sebastián Díaz; Francisco Panzera; Nicolás Jaramillo-O; Rubén Pérez; Rosina Fernández; Gustavo Adolfo Vallejo; Azael Saldaña; José E. Calzada; Omar Triana; Andrés Gómez-Palacio

The Rhodnius Pacific group is composed of three species: Rhodnius pallescens, R. colombiensis and R. ecuadoriensis, which are considered important vectors of trypanosomes (Trypanosoma cruzi and T. rangeli) infecting humans. This group is considered as a recent trans-Andean lineage derived from the widespread distributed sister taxa R. pictipes during the later uplift of northern Andes mountain range. The widest spread species R. pallescens may be a complex of two divergent lineages with different chromosomal attributes and a particular biogeographical distribution across Central America and Colombia with several southern populations in Colombia occupying the same sylvatic habitat as its sister species R. colombiensis. Although the taxonomy of Rhodnius Pacific group has been well studied, the unresolved phylogenetic and systematic issues are the target of this paper. Here we explore the molecular phylogeography of this species group analyzing two mitochondrial (ND4 and cyt b) and one nuclear (D2 region of ribosomal 28S gene) gene sequences. The molecular analyses suggest an early divergence of the species R. ecuadoriensis and R. colombiensis, followed by a recent expansion of R. pallescens lineages. The phylogenetic relationship between sympatric R. pallescens Colombian lineage and R. colombiensis was further explored using wing morphometry, DNA genome size measurements, and by analyzing chromosomal behavior of hybrids progeny obtained from experimental crosses. Our results suggest that the diversification of the two R. pallescens lineages was mainly influenced by biogeographical events such as (i) the emergence of the Panama Isthmus, while the origin and divergence of R. colombiensis was associated with (ii) the development of particular genetic and chromosomal features that act as isolation mechanisms from its sister species R. pallescens (Colombian lineage). These findings provide new insights into the evolution of the Rhodnius Pacific group and the underlying biological processes that occurred during its divergence.


PLOS Neglected Tropical Diseases | 2014

Molecular Evidence of Demographic Expansion of the Chagas Disease Vector Triatoma dimidiata (Hemiptera, Reduviidae, Triatominae) in Colombia

Andrés Gómez-Palacio; Omar Triana

Background Triatoma dimidiata is one of the most significant vectors of Chagas disease in Central America and Colombia, and, as in most species, its pattern of genetic variation within and among populations is strongly affected by its phylogeographic history. A putative origin from Central America has been proposed for Colombian populations, and high genetic differentiation among three biographically different population groups has recently been evidenced. Analyses based on putatively neutral markers provide data from which past events, such as population expansions and colonization, can be inferred. We analyzed the genealogies of the nicotinamide adenine dinucleotide dehydrogenase 4 (ND4) and the cytochrome oxidase subunit 1-mitochondrial genes, as well as partial nuclear ITS-2 DNA sequences obtained across most of the eco-geographical range in Colombia, to assess the population structure and demographic factors that may explain the geographical distribution of T. dimidiata in this country. Results The population structure results support a significant association between genetic divergence and the eco-geographical location of population groups, suggesting that clear signals of demographic expansion can explain the geographical distribution of haplotypes of population groups. Additionally, empirical date estimation of the event suggests that the populations expansion can be placed after the emergence of the Panama Isthmus, and that it was possibly followed by a population fragmentation process, perhaps resulting from local adaptation accomplished by orographic factors such as geographical isolation. Conclusion Inferences about the historical population processes in Colombian T. dimidiata populations are generally in accordance with population expansions that may have been accomplished by two important biotic and orographic events such as the Great American Interchange and the uplift of the eastern range of the Andes mountains in central Colombia.


Infection, Genetics and Evolution | 2013

Eco-geographical differentiation among Colombian populations of the Chagas disease vector Triatoma dimidiata (Hemiptera: Reduviidae)

Andrés Gómez-Palacio; Omar Triana; Nicolás Jaramillo-O; Ellen M. Dotson; Paula L. Marcet

Triatoma dimidiata is currently the main vector of Chagas disease in Mexico, most Central American countries and several zones of Ecuador and Colombia. Although this species has been the subject of several recent phylogeographic studies, the relationship among different populations within the species remains unclear. To elucidate the population genetic structure of T. dimidiata in Colombia, we analyzed individuals from distinct geographical locations using the cytochrome c oxidase subunit 1 gene and 7 microsatellite loci. A clear genetic differentiation was observed among specimens from three Colombian eco-geographical regions: Inter Andean Valleys, Caribbean Plains and Sierra Nevada de Santa Marta mountain (SNSM). Additionally, evidence of genetic subdivision was found within the Caribbean Plains region as well as moderate gene flow between the populations from the Caribbean Plains and SNSM regions. The genetic differentiation found among Colombian populations correlates, albeit weakly, with an isolation-by-distance model (IBD). The genetic heterogeneity among Colombian populations correlates with the eco-epidemiological and morphological traits observed in this species across regions within the country. Such genetic and epidemiological diversity should be taken into consideration for the development of vector control strategies and entomological surveillance.


Infection, Genetics and Evolution | 2015

Ecological niche and geographic distribution of the Chagas disease vector, Triatoma dimidiata (Reduviidae: Triatominae): Evidence for niche differentiation among cryptic species.

Andrés Gómez-Palacio; Sair Arboleda; Eric Dumonteil; A. Townsend Peterson

The principal vector of Chagas disease in Central America, Triatoma dimidiata, shows considerable diversity of habitat, phenotype, and genotype across its geographic range (central Mexico to southern Ecuador), suggesting that it constitutes a complex of cryptic species. However, no consistent picture of the magnitude of ecological differentiation among populations of this complex has yet been developed. To assess ecological variation across the complex, we broadened the geographic coverage of phylogeographic data and analyses for the complex into Colombia and Mexico, with additional nuclear (ITS-2) and mitochondrial (ND4) DNA sequences. This information allowed us to describe distributions of previously documented clades in greater detail: Group I, from central Guatemala south to Ecuador; Group II, across Mexico south through the Yucatán Peninsula to Belize and northern Guatemala; and Group III, in northern Guatemala, Belize, and the Yucatán Peninsula. Using ecological niche modeling, we assessed ecological niche differentiation among the groups using four hypotheses of accessible areas (M) across the distribution of the complex. Results indicated clear niche divergence of Group I from Group II: the speciation process thus appears to have involved genetic and ecological changes, suggesting divergence in populations in response to environmental conditions.


Parasites & Vectors | 2015

Eco-epidemiological study of an endemic Chagas disease region in northern Colombia reveals the importance of Triatoma maculata (Hemiptera: Reduviidae), dogs and Didelphis marsupialis in Trypanosoma cruzi maintenance

Omar Cantillo-Barraza; Edilson Garcés; Andrés Gómez-Palacio; Luis A. Cortés; André Pereira; Paula L. Marcet; Ana Maria Jansen; Omar Triana-Chávez

BackgroundIn Colombia, Rhodnius prolixus and Triatoma dimidiata are the main domestic triatomine species known to transmit T. cruzi. However, there are multiple reports of T. cruzi transmission involving secondary vectors. In this work, we carried out an eco-epidemiological study on Margarita Island, located in the Caribbean region of Colombia, where Chagas disease is associated with non-domiciliated vectors.MethodsTo understand the transmission dynamics of Trypanosoma cruzi in this area, we designed a comprehensive, multi-faceted study including the following: (i) entomological evaluation through a community-based insect-surveillance campaign, blood meal source determination and T. cruzi infection rate estimation in triatomine insects; (ii) serological determination of T. cruzi prevalence in children under 15 years old, as well as in domestic dogs and synanthropic mammals; (iii) evaluation of T. cruzi transmission capacity in dogs and Didelphis marsupialis, and (iv) genetic characterization of T. cruzi isolates targeting spliced-leader intergene region (SL-IR) genotypes.ResultsOut of the 124 triatomines collected, 94 % were Triatoma maculata, and 71.6 % of them were infected with T. cruzi. Blood-meal source analysis showed that T. maculata feeds on multiple hosts, including humans and domestic dogs. Serological analysis indicated 2 of 803 children were infected, representing a prevalence of 0.25 %. The prevalence in domestic dogs was 71.6 % (171/224). Domestic dogs might not be competent reservoir hosts, as inferred from negative T. cruzi xenodiagnosis and haemoculture tests. However, 61.5 % (8/13) of D. marsupialis, the most abundant synanthropic mammal captured, were T. cruzi-positive on xenodiagnosis and haemocultures.ConclusionsThis study reveals the role of peridomestic T. maculata and dogs in T. cruzi persistence in this region and presents evidence that D. marsupialis are a reservoir mediating peridomestic-zoonotic cycles. This picture reflects the complexity of the transmission dynamics of T. cruzi in an endemic area with non-domiciliated vectors where active human infection exists. There is an ongoing need to control peridomestic T. maculata populations and to implement continuous reservoir surveillance strategies with community participation.

Collaboration


Dive into the Andrés Gómez-Palacio's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Omar Triana

University of Antioquia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francisco Panzera

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jaime Calle

University of Antioquia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rubén Pérez

Autonomous University of Madrid

View shared research outputs
Researchain Logo
Decentralizing Knowledge