Andrés N. McCarthy
National University of La Plata
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrés N. McCarthy.
Biophysical Journal | 2010
J. Raul Grigera; Andrés N. McCarthy
It is well known that proteins denature under high pressure. The mechanism that underlies such a process is still not clearly understood, however, giving way to controversial interpretations. Using molecular dynamics simulation on systems that may be regarded experimentally as limiting examples of the effect of high pressure on globular proteins, such as lysozyme and apomyoglobin, we have effectively reproduced such similarities and differences in behavior as are interpreted from experiment. From the analysis of such data, we explain the experimental evidence at hand through the effect of pressure on the change of water structure, and hence the weakening of the hydrophobic effect that is known to be the main driving force in protein folding.
Journal of Biophysics | 2012
H. Ariel Alvarez; Andrés N. McCarthy; J. Raul Grigera
In this work, we present a study of the interaction between human serum albumin (HSA) and acetylsalicylic acid (ASA, C9H8O4) by molecular dynamics simulations (MD). Starting from an experimentally resolved structure of the complex, we performed the extraction of the ligand by means of the application of an external force. After stabilization of the system, we quantified the force used to remove the ASA from its specific site of binding to HSA and calculated the mechanical nonequilibrium external work done during this process. We obtain a reasonable value for the upper boundary of the Gibbs free energy difference (an equilibrium thermodynamic potential) between the complexed and noncomplexed states. To achieve this goal, we used the finite sampling estimator of the average work, calculated from the Jarzynski Equality. To evaluate the effect of the solvent, we calculated the so-called “viscous work,” that is, the work done to move the aspirin in the same trajectory through the solvent in absence of the protein, so as to assess the relevance of its contribution to the total work. The results are in good agreement with the available experimental data for the albumin affinity constant for aspirin, obtained through quenching fluorescence methods.
Journal of Chemical Physics | 2007
Gastón Ferrara; Andrés N. McCarthy; J. Raul Grigera
While the hydrophobic effect is, for many systems, one of the most relevant interactions, it may be said that in the case of biological systems this effect becomes of determinant importance. Although the matter has been analyzed extensively, certain aspects are yet to be elucidated. Hence, the study on the behavior of the hydrophobic effect with temperature, and particularly with pressure deserves further investigation; model systems may help us in the task. We have analyzed the behavior of Lennard-Jones particles in water by means of molecular dynamics simulation under different conditions of size, concentration, temperature, and pressure. Following the formation of particle aggregates we can observe an increase of the hydrophobic effect with temperature and a strong weakening of the effect at high pressures. The results agree with the experimental evidence and show the ability of molecular dynamics simulation to account for the behavior of nonpolar substances under different conditions, provided that the intermolecular interactions used are adequate.
Journal of Molecular Graphics & Modelling | 2009
Andrés N. McCarthy; Inés G. Mogilner; J. Raul Grigera; M. Inés Borelli; Héctor Del Zotto; Juan José Gagliardino
We have studied the structural and dynamical properties of the biologically active pentadecapeptide of the islet neogenesis associated protein (INGAP-PP) and of two other pentadecapeptides with the same amino acid composition but randomly scrambled primary sequences, using molecular dynamic simulations. Our data demonstrates that whilst the peptides with scrambled sequences show no definite prevalent structure in solution, INGAP-PP maintains a notably stable tertiary fold, namely, a conformer with a central beta-sheet and closed C-terminal. Such structure resembles the one corresponding to the amino acid sequence of human pancreatitis associated protein-1 (PAP-1), which presents 85% sequence homology with INGAP. These results could reasonably explain why the two scrambled sequences tested showed no biological activity, while INGAP-PP significantly increases beta-cells function and mass both in vitro and in vivo conditions. The capability of INGAP-PP to temporarily adopt other closely related conformations offers also a plausible explanation for the 50 fold experimental difference in potency between the active pentadecapeptide and the whole protein. They also suggest that the C-terminal region of INGAP-PP may plausibly be the locus for its interaction with the cell receptor. Consequently, the knowledge gathered through our data can help to obtain more potent INGAP-PP analogs, suitable for the prevention and treatment of diabetes.
Scientific Reports | 2018
Andrea Belén Dulbecco; Débora E. Moriconi; Gustavo M. Calderón-Fernández; Soledad Lynn; Andrés N. McCarthy; Gonzalo Roca-Acevedo; Jhon A. Salamanca-Moreno; M. Patricia Juárez; Nicolás Pedrini
Insect resistance to chemical insecticides is attributed to a combination of different mechanisms, such as metabolic resistance, knockdown resistance, and the cuticular resistance or penetration factor. The insect integument offers an efficient barrier against contact insecticides and its role as penetration factor has been previously reported; however, there is no information about its potential function in the metabolic resistance. Cytochrome P450 genes (CYP) are highly expressed in the fat body of several insects and thus play a key role in their metabolic resistance. Here, we describe new members that belong to the highly genome-wide expanded CYP3093A and CYP4EM subfamilies in the Chagas disease vectors Rhodnius prolixus and Triatoma infestans. We modeled the docking of deltamethrin in their active site and detected differences in some amino acids between both species that are critical for a correct interaction with the substrate. We also knocked down the two constitutively most expressed genes in the integument of resistant T. infestans nymphs (CYP3093A11 and CYP4EM10) in order to find clues on their participation in deltamethrin resistance. This is the first report on the role of the insect integument in detoxification events; although these two CYP genes do not fully explain the resistance observed in T. infestans.
Journal of Molecular Graphics & Modelling | 2006
Andrés N. McCarthy; J. Raul Grigera
Biochimica et Biophysica Acta | 2006
Andrés N. McCarthy; J. Raul Grigera
Journal of Biological Physics | 2007
Osvaldo Chara; José Raúl Grigera; Andrés N. McCarthy
Physica A-statistical Mechanics and Its Applications | 2009
Osvaldo Chara; Andrés N. McCarthy; C. Gastón Ferrara; Ernesto R. Caffarena; J. Raul Grigera
Asian Journal of Computer and Information Systems | 2014
H. Ariel Alvarez; Carlos Llerena Suster; Andrés N. McCarthy