Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrés Palencia is active.

Publication


Featured researches published by Andrés Palencia.


Antimicrobial Agents and Chemotherapy | 2013

Discovery of a Novel Class of Boron-Based Antibacterials with Activity against Gram-Negative Bacteria

Vincent Hernandez; Thibaut Crépin; Andrés Palencia; Stephen Cusack; Tsutomu Akama; Stephen J. Baker; Wei Bu; Lisa Feng; Yvonne Freund; Liang Liu; Maliwan Meewan; Manisha Mohan; Weimin Mao; Fernando Rock; Holly Sexton; Anita Sheoran; Yanchen Zhang; Yong-Kang Zhang; Yasheen Zhou; James A. Nieman; Mahipal Reddy Anugula; El Mehdi Keramane; Kingsley Savariraj; D. Shekhar Reddy; Rashmi Sharma; Rajendra Subedi; Rajeshwar Singh; Ann O'Leary; Nerissa L. Simon; Peter L. De Marsh

ABSTRACT Gram-negative bacteria cause approximately 70% of the infections in intensive care units. A growing number of bacterial isolates responsible for these infections are resistant to currently available antibiotics and to many in development. Most agents under development are modifications of existing drug classes, which only partially overcome existing resistance mechanisms. Therefore, new classes of Gram-negative antibacterials with truly novel modes of action are needed to circumvent these existing resistance mechanisms. We have previously identified a new a way to inhibit an aminoacyl-tRNA synthetase, leucyl-tRNA synthetase (LeuRS), in fungi via the oxaborole tRNA trapping (OBORT) mechanism. Herein, we show how we have modified the OBORT mechanism using a structure-guided approach to develop a new boron-based antibiotic class, the aminomethylbenzoxaboroles, which inhibit bacterial leucyl-tRNA synthetase and have activity against Gram-negative bacteria by largely evading the main efflux mechanisms in Escherichia coli and Pseudomonas aeruginosa. The lead analogue, AN3365, is active against Gram-negative bacteria, including Enterobacteriaceae bearing NDM-1 and KPC carbapenemases, as well as P. aeruginosa. This novel boron-based antibacterial, AN3365, has good mouse pharmacokinetics and was efficacious against E. coli and P. aeruginosa in murine thigh infection models, which suggest that this novel class of antibacterials has the potential to address this unmet medical need.


Molecular Cell | 2012

A Role for Fkbp6 and the Chaperone Machinery in piRNA Amplification and Transposon Silencing

Jordi Xiol; Elisa Cora; Rubina Koglgruber; Shinichiro Chuma; Sailakshmi Subramanian; Mihoko Hosokawa; Michael Reuter; Zhaolin Yang; Philipp Berninger; Andrés Palencia; Vladimir Benes; Josef M. Penninger; Ravi Sachidanandam; Ramesh S. Pillai

Epigenetic silencing of transposons by Piwi-interacting RNAs (piRNAs) constitutes an RNA-based genome defense mechanism. Piwi endonuclease action amplifies the piRNA pool by generating new piRNAs from target transcripts by a poorly understood mechanism. Here, we identified mouse Fkbp6 as a factor in this biogenesis pathway delivering piRNAs to the Piwi protein Miwi2. Mice lacking Fkbp6 derepress LINE1 (L1) retrotransposon and display reduced DNA methylation due to deficient nuclear accumulation of Miwi2. Like other cochaperones, Fkbp6 associates with the molecular chaperone Hsp90 via its tetratricopeptide repeat (TPR) domain. Inhibition of the ATP-dependent Hsp90 activity in an insect cell culture model results in the accumulation of short antisense RNAs in Piwi complexes. We identify these to be byproducts of piRNA amplification that accumulate only in nuage-localized Piwi proteins. We propose that the chaperone machinery normally ejects these inhibitory RNAs, allowing turnover of Piwi complexes for their continued participation in piRNA amplification.


Nature Structural & Molecular Biology | 2012

Structural Dynamics of the Aminoacylation and Proofreading Functional Cycle of Bacterial Leucyl-tRNA Synthetase

Andrés Palencia; Thibaut Crépin; Michael T. Vu; Tommie L. Lincecum; Susan A. Martinis; Stephen Cusack

Leucyl-tRNA synthetase (LeuRS) produces error-free leucyl-tRNALeu by coordinating translocation of the 3′ end of (mis-)charged tRNAs from its synthetic site to a separate proofreading site for editing. Here we report cocrystal structures of the Escherichia coli LeuRS–tRNALeu complex in the aminoacylation or editing conformations, showing that translocation involves correlated rotations of four flexibly linked LeuRS domains. This pivots the tRNA to guide its charged 3′ end from the closed aminoacylation state to the editing site. The editing domain unexpectedly stabilizes the tRNA during aminoacylation, and a large rotation of the leucine-specific domain positions the conserved KMSKS loop to bind the 3′ end of the tRNA, promoting catalysis. Our results give new insight into the structural dynamics of a molecular machine that is essential for accurate protein synthesis.


Journal of Virology | 2010

Mutational and Metal Binding Analysis of the Endonuclease Domain of the Influenza Virus Polymerase PA Subunit

Thibaut Crépin; Alexandre Dias; Andrés Palencia; Christopher Swale; Stephen Cusack; Rob W. H. Ruigrok

ABSTRACT Influenza virus polymerase initiates the biosynthesis of its own mRNAs with capped 10- to 13-nucleotide fragments cleaved from cellular (pre-)mRNAs. Two activities are required for this cap-snatching activity: specific binding of the cap structure and an endonuclease activity. Recent work has shown that the cap-binding site is situated in the central part of the PB2 subunit and that the endonuclease activity is situated in the N-terminal domain of the PA subunit (PA-Nter). The influenza endonuclease is a member of the PD-(D/E)XK family of nucleases that use divalent metal ions for nucleic acid cleavage. Here we analyze the metal binding and endonuclease activities of eight PA-Nter single-point mutants. We show by calorimetry that the wild-type active site binds two Mn2+ ions and has a 500-fold higher affinity for manganese than for magnesium ions. The endonuclease activity of the isolated mutant domains are compared with the cap-dependent transcription activities of identical mutations in trimeric recombinant polymerases previously described by other groups. Mutations that inactivate the endonuclease activity in the isolated PA-Nter knock out the transcription but not replication activity in the recombinant polymerase. We confirm the importance of a number of active-site residues and identify some residues that may be involved in the positioning of the RNA substrate in the active site. Our results validate the use of the isolated endonuclease domain in a drug-design process for new anti-influenza virus compounds.


The EMBO Journal | 2014

The physiological target for LeuRS translational quality control is norvaline

Nevena Cvetesic; Andrés Palencia; Ivan Halasz; Stephen Cusack; Ita Gruić-Sovulj

The fidelity of protein synthesis depends on the capacity of aminoacyl‐tRNA synthetases (AARSs) to couple only cognate amino acid‐tRNA pairs. If amino acid selectivity is compromised, fidelity can be ensured by an inherent AARS editing activity that hydrolyses mischarged tRNAs. Here, we show that the editing activity of Escherichia coli leucyl‐tRNA synthetase (EcLeuRS) is not required to prevent incorrect isoleucine incorporation. Rather, as shown by kinetic, structural and in vivo approaches, the prime biological function of LeuRS editing is to prevent mis‐incorporation of the non‐standard amino acid norvaline. This conclusion follows from a reassessment of the discriminatory power of LeuRS against isoleucine and the demonstration that a LeuRS editing‐deficient E. coli strain grows normally in high concentrations of isoleucine but not under oxygen deprivation conditions when norvaline accumulates to substantial levels. Thus, AARS‐based translational quality control is a key feature for bacterial adaptive response to oxygen deprivation. The non‐essential role for editing under normal bacterial growth has important implications for the development of resistance to antimicrobial agents targeting the LeuRS editing site.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Structure and dynamics of the MKK7–JNK signaling complex

Jaka Kragelj; Andrés Palencia; Max H. Nanao; Damien Maurin; Guillaume Bouvignies; Martin Blackledge; Malene Ringkjøbing Jensen

Significance In the mitogen-activated protein kinase (MAPK) pathways, N-terminal intrinsically disordered regulatory domains of the MAPK kinases (MKK) control signaling specificity by binding to their cognate MAPKs via docking sites carrying homologous recognition sequences. MKK7 activates the c-Jun N-terminal kinase (JNK) pathway and is the only MKK containing three motifs within its regulatory domain. Here we obtain a comprehensive picture of the structure, dynamics, affinity, stoichiometry, and kinetics of the MKK7–JNK signaling complex. Importantly, we show using a combination of X-ray crystallography and NMR exchange spectroscopy that the second docking site of MKK7 binds to JNK via two alternative binding modes, providing insight into the regulation of signaling specificity by short linear motifs. Signaling specificity in the mitogen-activated protein kinase (MAPK) pathways is controlled by disordered domains of the MAPK kinases (MKKs) that specifically bind to their cognate MAPKs via linear docking motifs. MKK7 activates the c-Jun N-terminal kinase (JNK) pathway and is the only MKK containing three motifs within its regulatory domain. Here, we characterize the conformational behavior and interaction mechanism of the MKK7 regulatory domain. Using NMR spectroscopy, we develop an atomic resolution ensemble description of MKK7, revealing highly diverse intrinsic conformational propensities of the three docking sites, suggesting that prerecognition sampling of the bound-state conformation is not prerequisite for binding. Although the different sites exhibit similar affinities for JNK1, interaction kinetics differ considerably. Importantly, we determine the crystal structure of JNK1 in complex with the second docking site of MKK7, revealing two different binding modes of the docking motif correlating with observations from NMR exchange spectroscopy. Our results provide unique insight into how signaling specificity is regulated by linear motifs and, in general, into the role of conformational disorder in MAPK signaling.


RNA | 2012

The multiple Tudor domain-containing protein TDRD1 is a molecular scaffold for mouse Piwi proteins and piRNA biogenesis factors.

Nikolas Mathioudakis; Andrés Palencia; Jan Kadlec; Adam Round; Konstantinos Tripsianes; Michael Sattler; Ramesh S. Pillai; Stephen Cusack

Piwi-interacting RNAs (piRNAs) are small noncoding RNAs expressed in the germline of animals. They associate with Argonaute proteins of the Piwi subfamily, forming ribonucleoprotein complexes that are involved in maintaining genome integrity. The N-terminal region of some Piwi proteins contains symmetrically dimethylated arginines. This modification is thought to enable recruitment of Tudor domain-containing proteins (TDRDs), which might serve as platforms mediating interactions between various proteins in the piRNA pathway. We measured the binding affinity of the four individual extended Tudor domains (TDs) of murine TDRD1 protein for three different methylarginine-containing peptides from murine Piwi protein MILI. The results show a preference of TD2 and TD3 for consecutive MILI peptides, whereas TD4 and TD1 have, respectively, lower and very weak affinity for any peptide. The affinity of TD1 for methylarginine peptides can be restored by a single-point mutation back to the consensus aromatic cage sequence. These observations were confirmed by pull-down experiments with endogenous Piwi and Piwi-associated proteins. The crystal structure of TD3 bound to a methylated MILI peptide shows an unexpected orientation of the bound peptide, with additional contacts of nonmethylated residues being made outside of the aromatic cage, consistent with solution NMR titration experiments. Finally, the molecular envelope of the four tandem Tudor domains of TDRD1, derived from small angle scattering data, reveals a flexible, elongated shape for the protein. Overall, the results show that TDRD1 can accommodate different peptides from different proteins, and can therefore act as a scaffold protein for complex assembly in the piRNA pathway.


Nucleic Acids Research | 2013

The RNA-binding region of human TRBP interacts with microRNA precursors through two independent domains

Matthieu P. M. H. Benoit; Lionel Imbert; Andrés Palencia; Julien Pérard; Christine Ebel; Jérôme Boisbouvier; Michael J. Plevin

MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression through RNA interference. Human miRNAs are generated through a series of enzymatic processing steps. The precursor miRNA (pre-miRNA) is recognized and cleaved by a complex containing Dicer and several non-catalytic accessory proteins. HIV TAR element binding protein (TRBP) is a constituent of the Dicer complex, which augments complex stability and potentially functions in substrate recognition and product transfer to the RNA-induced silencing complex. Here we have analysed the interaction between the RNA-binding region of TRBP and an oncogenic human miRNA, miR-155, at different stages in the biogenesis pathway. We show that the region of TRBP that binds immature miRNAs comprises two independent double-stranded RNA-binding domains connected by a 60-residue flexible linker. No evidence of contact between the two double-stranded RNA-binding domains was observed either in the apo- or RNA-bound state. We establish that the RNA-binding region of TRBP interacts with both pre-miR-155 and the miR-155/miR-155* duplex through the same binding surfaces and with similar affinities, and that two protein molecules can simultaneously interact with each immature miRNA. These data suggest that TRBP could play a role before and after processing of pre-miRNAs by Dicer.


FEBS Journal | 2014

Crystal structure of mouse mu-crystallin complexed with NADPH and the T3 thyroid hormone.

Franck Borel; Isma Hachi; Andrés Palencia; Marie-Claude Gaillard; Jean-Luc Ferrer

Mu‐crystallin (CRYM), first described as a structural component of the eye lens in marsupials, has been characterized as an NADPH‐dependent cytosolic T3 thyroid hormone (triiodothyronine) binding protein. More recently, CRYM has also been associated with ketimine reductase activity. Here, we report three crystal structures: mouse CRYM (mCRYM) in its apo form, in a form complexed with NADPH, and in a form with both NADPH and triiodothyronine bound. Comparison of the apo and NADPH forms reveals a rearrangement of the protein upon NADPH binding that reduces the degrees of freedom of several residues and traps the conformation of the binding pocket in a more T3 competent state. These findings are in agreement with the cooperative mechanism identified using isothermal titration calorimetry. Our structure with T3 reveals for the first time the location of the hormone binding site and shows its detailed interactions. T3 binding involves mainly hydrophobic interactions. Only five residues, either directly or through bridging water molecules, are hydrogen bonded to the hormone. Using in silico docking analysis, a series of ring‐containing hydrophobic molecules were identified as potential mCRYM ligands, suggesting that the specificity for the recognition of the hydrophobic part of the hormone might be low. This is in agreement with the ketimine reductase activity that has been identified for ovine CRYM, as it demonstrates how a protein known as a thyroid hormone transporter can accommodate the ringed molecules required for its ketimine reductase activity. In the light of our results, a putative role of CRYM in thyroid hormone metabolism is also discussed.


Antimicrobial Agents and Chemotherapy | 2016

Antimalarial Benzoxaboroles Target Plasmodium falciparum Leucyl-tRNA Synthetase.

Ebere Sonoiki; Andrés Palencia; Denghui Guo; Vida Ahyong; Chen Dong; Xianfeng Li; Vincent Hernandez; Yong-Kang Zhang; Wai Choi; Jiri Gut; Jennifer Legac; Roland A. Cooper; M. R. K. Alley; Yvonne Freund; Joseph L. DeRisi; Stephen Cusack; Philip J. Rosenthal

ABSTRACT There is a need for new antimalarials, ideally with novel mechanisms of action. Benzoxaboroles have been shown to be active against bacteria, fungi, and trypanosomes. Therefore, we investigated the antimalarial activity and mechanism of action of 3-aminomethyl benzoxaboroles against Plasmodium falciparum. Two 3-aminomethyl compounds, AN6426 and AN8432, demonstrated good potency against cultured multidrug-resistant (W2 strain) P. falciparum (50% inhibitory concentration [IC50] of 310 nM and 490 nM, respectively) and efficacy against murine Plasmodium berghei infection when administered orally once daily for 4 days (90% effective dose [ED90], 7.4 and 16.2 mg/kg of body weight, respectively). To characterize mechanisms of action, we selected parasites with decreased drug sensitivity by culturing with stepwise increases in concentration of AN6426. Resistant clones were characterized by whole-genome sequencing. Three generations of resistant parasites had polymorphisms in the predicted editing domain of the gene encoding a P. falciparum leucyl-tRNA synthetase (LeuRS; PF3D7_0622800) and in another gene (PF3D7_1218100), which encodes a protein of unknown function. Solution of the structure of the P. falciparum LeuRS editing domain suggested key roles for mutated residues in LeuRS editing. Short incubations with AN6426 and AN8432, unlike artemisinin, caused dose-dependent inhibition of [14C]leucine incorporation by cultured wild-type, but not resistant, parasites. The growth of resistant, but not wild-type, parasites was impaired in the presence of the unnatural amino acid norvaline, consistent with a loss of LeuRS editing activity in resistant parasites. In summary, the benzoxaboroles AN6426 and AN8432 offer effective antimalarial activity and act, at least in part, against a novel target, the editing domain of P. falciparum LeuRS.

Collaboration


Dive into the Andrés Palencia's collaboration.

Top Co-Authors

Avatar

Stephen Cusack

Unit of Virus Host Cell Interactions

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jaka Kragelj

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Malene Ringkjøbing Jensen

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Martin Blackledge

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Cornelia Virus

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge