Andres Ramirez
European Southern Observatory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andres Ramirez.
Proceedings of SPIE | 2010
Pierre Haguenauer; Jaime Alonso; Pierre Bourget; S. Brillant; Philippe B. Gitton; Stephane Guisard; Sébastien Poupar; Nicolas Schuhler; Roberto Abuter; Luigi Andolfato; Guillaume Blanchard; Jean-Philippe Berger; Angela Cortes; Frederic Derie; Francoise Delplancke; Nicola Di Lieto; Christophe Dupuy; Bruno Gilli; Andreas Glindemann; Serge Guniat; Gerhard Huedepohl; Andreas Kaufer; Jean-Baptiste Le Bouquin; Samuel A. Leveque; Serge Menardi; A. Mérand; S. Morel; Isabelle Percheron; Than Phan Duc; Andres Pino
The ESO Very Large Telescope Interferometer (VLTI) offers access to the four 8-m Unit Telescopes (UT) and the four 1.8-m Auxiliary Telescopes (AT) of the Paranal Observatory located in the Atacama Desert in northern Chile. The two VLTI instruments, MIDI and AMBER deliver regular scientific results. In parallel to the operation, the instruments developments are pursued, and new modes are studied and commissioned to offer a wider range of scientific possibilities to the community. New configurations of the ATs array are discussed with the science users of the VLTI and implemented to optimize the scientific return. The monitoring and improvement of the different systems of the VLTI is a continuous work. The PRIMA instrument, bringing astrometry capability to the VLTI and phase referencing to the instruments has been successfully installed and the commissioning is ongoing. The possibility for visiting instruments has been opened to the VLTI facility.
Astronomy and Astrophysics | 2014
A. Müller; J.-U. Pott; A. Mérand; Roberto Abuter; F. Delplancke-Ströbele; Th. Henning; R. Köhler; Ch. Leinert; S. Morel; T. Phan Duc; Eszter Pozna; Andres Ramirez; J. Sahlmann; C. Schmid
Context: A turbulent atmosphere causes atmospheric piston variations leading to rapid changes in the optical path difference of an interferometer, which causes correlated flux losses. This leads to decreased sensitivity and accuracy in the correlated flux measurement. Aims: To stabilize the N band interferometric signal in MIDI (MID-infrared Interferometric instrument), we use an external fringe tracker working in K band, the so-called FSU-A (fringe sensor unit) of the PRIMA (Phase-Referenced Imaging and Micro-arcsecond Astrometry) facility at VLTI. We present measurements obtained using the newly commissioned and publicly offered MIDI+FSU-A mode. A first characterization of the fringe-tracking performance and resulting gains in the N band are presented. In addition, we demonstrate the possibility of using the FSU-A to measure visibilities in the K band. Methods: We analyzed FSU-A fringe track data of 43 individual observations covering different baselines and object K band magnitudes with respect to the fringe-tracking performance. The N band group delay and phase delay values could be predicted by computing the relative change in the differential water vapor column density from FSU-A data. Visibility measurements in the K band were carried out using a scanning mode of the FSU-A. Results: Using the FSU-A K band group delay and phase delay measurements, we were able to predict the corresponding N band values with high accuracy with residuals of less than 1 micrometer. This allows the coherent integration of the MIDI fringes of faint or resolved N band targets, respectively. With that method we could decrease the detection limit of correlated fluxes of MIDI down to 0.5 Jy (vs. 5 Jy without FSU-A) and 0.05 Jy (vs. 0.2 Jy without FSU-A) using the ATs and UTs, respectively. The K band visibilities could be measured with a precision down to ~2%.
Proceedings of SPIE | 2008
Pierre Haguenauer; Roberto Abuter; Jaime Alonso; Javier Argomedo; Bertrand Bauvir; Guillaume Blanchard; Henri Bonnet; S. Brillant; Michael Cantzler; Frederic Derie; Francoise Delplancke; Nicola Di Lieto; Christophe Dupuy; Yves Durand; Philippe B. Gitton; Bruno Gilli; Andreas Glindemann; Serge Guniat; Stephane Guisard; Nicolas Haddad; Gerhard Hudepohl; Christian A. Hummel; Nathaniel Jesuran; Andreas Kaufer; Bertrand Koehler; Jean-Baptiste Le Bouquin; Samuel A. Leveque; C. Lidman; Pedro Mardones; Serge Menardi
The ESO Very Large Telescope Interferometer (VLTI) offers access to the four 8 m Unit Telescopes (UT) and the four 1.8 m Auxiliary Telescopes (AT) of the Paranal Observatory located in the Atacama Desert in northern Chile. The fourth AT has been delivered to operation in December 2006, increasing the flexibility and simultaneous baselines access of the VLTI. Regular science operations are now carried on with the two VLTI instruments, AMBER and MIDI. The FINITO fringe tracker is now used for both visitor and service observations with ATs and will be offered on UTs in October 2008, bringing thus the fringe tracking facility to VLTI instruments. In parallel to science observations, technical periods are also dedicated to the characterization of the VLTI environment, upgrades of the existing systems, and development of new facilities. We will describe the current status of the VLTI and prospects on future evolution.
Proceedings of SPIE | 2014
A. Mérand; Roberto Abuter; Emmanuel Aller-Carpentier; Luigi Andolfato; Jaime Alonso; Jean-Philippe Berger; Guillaume Blanchard; Henri M. J. Boffin; Pierre Bourget; Paul Bristow; Claudia Cid; Willem-Jan de Wit; Diego Del Valle; F. Delplancke-Ströbele; Frederic Derie; Lorena Faundez; Steve Ertel; Rebekka Grellmann; Philippe B. Gitton; Andreas Glindemann; Patricia Guajardo; S. Guieu; Stephane Guisard; Serge Guniat; Pierre Haguenauer; Cristian Herrera; Christian A. Hummel; Carlos La Fuente; Marcelo Lopez; Pedro Mardones
We present the latest update of the European Southern Observatorys Very Large Telescope interferometer (VLTI). The operations of VLTI have greatly improved in the past years: reduction of the execution time; better offering of telescopes configurations; improvements on AMBER limiting magnitudes; study of polarization effects and control for single mode fibres; fringe tracking real time data, etc. We present some of these improvements and also quantify the operational improvements using a performance metric. We take the opportunity of the first decade of operations to reflect on the VLTI community which is analyzed quantitatively and qualitatively. Finally, we present briefly the preparatory work for the arrival of the second generation instruments GRAVITY and MATISSE.
Proceedings of SPIE | 2006
M. Schöller; Javier Argomedo; Bertrand Bauvir; Leonardo Blanco-Lopez; Henri Bonnet; S. Brillant; Michael Cantzler; Johan Carstens; Fabio Caruso; Christian Choque-Cortez; Frederic Derie; Francoise Delplancke; Nicola Di Lieto; Martin Dimmler; Yves Durand; Mark Ferrari; Emmanuel Galliano; Philippe B. Gitton; Bruno Gilli; Andreas Glindemann; Serge Guniat; Stephane Guisard; Nicolas Haddad; Pierre Haguenauer; Nico Housen; Gerd Hudepohl; Christian A. Hummel; Andreas Kaufer; M. Kiekebusch; Bertrand Koehler
The ESO Very Large Telescope Interferometer (VLTI) is the first general-user interferometer that offers near- and mid-infrared long-baseline interferometric observations in service and visitor mode to the whole astronomical community. Over the last two years, the VLTI has moved into its regular science operation mode with the two science instruments, MIDI and AMBER, both on all four 8m Unit Telescopes and the first three 1.8m Auxiliary Telescopes. We are currently devoting up to half of the available time for science, the rest is used for characterization and improvement of the existing system, plus additional installations. Since the first fringes with the VLTI on a star were obtained on March 17, 2001, there have been five years of scientific observations, with the different instruments, different telescopes and baselines. These observations have led so far to more than 40 refereed publications. We describe the current status of the VLTI and give an outlook for its near future.
Proceedings of SPIE | 2012
Pierre Haguenauer; Roberto Abuter; Luigi Andolfato; Jaime Alonso; Guillaume Blanchard; Jean-Philippe Berger; Pierre Bourget; S. Brillant; Frederic Derie; Francoise Delplancke; Nicola Di Lieto; Christophe Dupuy; Bruno Gilli; Philippe B. Gitton; J. C. González; Stephane Guisard; Serge Guniat; Gerhard Hudepohl; Andreas Kaufer; Samuel A. Leveque; Serge Menardi; A. Mérand; S. Morel; Isabelle Percheron; Than Phan Duc; Sébastien Poupar; Andres Ramirez; Claudio Reineiro; Sridharan Rengaswamy; Thomas Rivinius
The ESO Very Large Telescope Interferometer (VLTI) offers access to the four 8-m Unit Telescopes (UT) and the four 1.8-m Auxiliary Telescopes (AT) of the Paranal Observatory located in the Atacama Desert in northern Chile. The two VLTI instruments, MIDI and AMBER deliver regular scientific results. In parallel to the operation, the instruments developments are pursued, and new modes are studied and commissioned to offer a wider range of scientific possibilities to the community and increase sensitivity. New configurations of the ATs have been offered and are frequently discussed with the science users of the VLTI and implemented to optimize the scientific return. The PRIMA instrument, bringing astrometry capability to the VLTI and phase referencing to the instruments is being commissioned. The visitor instrument PIONIER is now fully operational and bringing imaging capability to the VLTI. The current status of the VLTI is described with successes and scientific results, and prospects on future evolution are presented.
Astronomy and Astrophysics | 2018
R. Abuter; A. Amorim; Narsireddy Anugu; M. Bauböck; M. Benisty; J. Berger; N. Blind; Henri Bonnet; W. Brandner; A. Buron; C. Collin; F. Chapron; Y. Clénet; V. Coudé du Foresto; P. T. de Zeeuw; Casey P. Deen; F. Delplancke-Ströbele; Roderick Dembet; Jason Dexter; Gilles Duvert; A. Eckart; F. Eisenhauer; Gert Finger; N. M. Förster Schreiber; Pierre Fedou; Paulo Garcia; R. J. García López; F. Gao; Eric Gendron; R. Genzel
This is the author accepted manuscript. the final version is available from EDP Sciences via the DOI in this record
Proceedings of SPIE | 2012
C. Schmid; Roberto Abuter; A. Mérand; J. Sahlmann; Jaime Alonso; Luigi Andolfato; G. van Belle; Francoise Delplancke; Frederic Derie; N. Di Lieto; R. Frahm; Ph. Gitton; N. Gomes; P. Haguenauer; B. Justen; Samuel A. Leveque; Serge Menardi; S. Morel; A. Müller; T. Phan Duc; Eszter Pozna; Andres Ramirez; Nicolas Schuhler; D. Segransan
The Phase Referenced Imaging and Micro Arcsecond Astrometry (PRIMA) facility for the Very Large Telescope Interferometer (VLTI), is being installed and tested in the observatory of Paranal. Since January 2011 the integration and individual testing of the different subsystem has come to a necessary minimum. At the same time the astrometric commissioning phase has begun. In this contribution we give an update on the status of the facility and present some highlights and difficulties on our way from first dual-feed fringe detection to first astrometric measurements. We focus on technical and operational aspects. In particular, within the context of the latter we are going to present a modified mode of operation that scans across the fringes. We will show that this mode, originally only intended for calibration purposes, facilitates the detection of dual-fringes.
Proceedings of SPIE | 2016
F. Gonte; Julien Woillez; Nicolas Schuhler; Sebastian Egner; A. Mérand; José Antonio Abad; Sergio Abadie; Roberto Abuter; Margarita Acuña; F. Allouche; Jaime Alonso; Luigi Andolfalto; Pierre Antonelli; Gerardo Avila; Pablo Barriga; Juan Beltran; Jean-Philippe Berger; Carlos Bolados; Henri Bonnet; Pierre Bourget; Roland Brast; Paul Bristow; Luis Caniguante; Roberto Castillo; Ralf Conzelmann; Angela Cortes; Francoise Delplancke; Diego Del Valle; Frederic Derie; Álvaro Diaz
ESO is undertaking a large upgrade of the infrastructure on Cerro Paranal in order to integrate the 2nd generation of interferometric instruments Gravity and MATISSE, and increase its performance. This upgrade started mid 2014 with the construction of a service station for the Auxiliary Telescopes and will end with the implementation of the adaptive optics system for the Auxiliary telescope (NAOMI) in 2018. This upgrade has an impact on the infrastructure of the VLTI, as well as its sub-systems and scientific instruments.
Proceedings of SPIE | 2010
A. Mérand; Stan Stefl; Pierre Bourget; Andres Ramirez; Fabien Patru; Pierre Haguenauer; S. Brillant
The Astronomical Multi-BEam Recombiner (AMBER), has been operational at the Very Large Telescope Interferometer (VLTI) for many years. We present here some of the constant improvements we have been providing while still operating the instrument, with a heavy load of visitor and service observing programs, most of the nights of the year. In particular, we present here improvements regarding the spectral calibration and correction of the atmospheric loss in squared visibility due to path difference jitter, allowing the instrument to achieve greater precision.