Andres Trikkel
Tallinn University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andres Trikkel.
Journal of Thermal Analysis and Calorimetry | 2013
Tõnis Meriste; Can Rüstü Yörük; Andres Trikkel; Tiit Kaljuvee; Rein Kuusik
A possible technology that can contribute reduction of carbon dioxide emission is oxy-fuel combustion of fossil fuels enabling to increase CO2 concentration in the exhaust gas by carrying out the combustion process with oxygen and replacing air nitrogen with recycling combustion products to obtain a capture-ready CO2 stream. The laboratory studies and pilot-scale experiments discussed during the last years have indicated that oxy-fuel combustion is a favorable option in retrofitting conventional coal firing. Estonian oil shale (OS) with its specific properties has never been studied as a fuel in oxy-fuel combustion, so, the aim of the present research was to compare thermo-oxidation of OS and some coal samples under air and oxy-fuel combustion conditions by means of thermal analysis methods. Experiments were carried out in Ar/O2 and CO2/O2 atmospheres with two oil shale and two coal samples under dynamic heating conditions. FTIR analysis was applied to characterize evolved gases and emission dynamics. Kinetic parameters of oxidation were calculated using a model-free kinetic analysis approach based on differential iso-conversional methods. Comparison of the oxidation characteristics of the samples was given in both atmospheres and it was shown that the oxidation process proceeds under oxy-fuel conditions by all studied fuels with lower activation energies, however, it can last longer as the same temperatures are compared.
Journal of Thermal Analysis and Calorimetry | 2001
Tiit Kaljuvee; Andres Trikkel; Rein Kuusik
The results obtained by studying decarbonization of different samples of Estonian limestone and dolomite and the following sulphation or carbonation of calcined products to estimate their SO2 and CO2 binding ability were presented. Experiments were carried out with thermogravimetric equipment(Q-Derivatograph, MOM and Labsys™, SETARAM) – calcination of the samples in the atmosphere of air with the heating rate 10 K per minute using multiplate crucibles, the following sulphation or carbonation of the calcined products after cooling to the fixed temperature (temperature range 400–900°C) under isothermal conditions in the flow of air-SO2 or air-CO2 mixture. Chemical, X-ray, BET nitrogen dynamic desorption, etc. methods for the characterization of the initial samples, intermediate and final products were used.In addition, the possibilities of recurrent use of oil shale ashes taken from different technological points at operating thermal power plants (Estonian and Baltic TTPs, Estonia) as sorbents for SO2 binding from gaseous phase were studied, as well as the possibilities of activation of these ashes towards SO2 binding.The results of these studies confirmed the high reactivity of Estonian limestone and dolomite towards SO2 and CO2. Dependence of SO2 binding mechanism on the SO2 concentration has been established. Modelling of SO2 capture of dolomite and limestone was carried out to establish the kinetic parameters of these processes. The possibilities of activation of oil shale ashes and their effective recurrent use for binding SO2 and CO2 from gaseous phase were confirmed.
Journal of Thermal Analysis and Calorimetry | 2003
Tiit Kaljuvee; Rein Kuusik; Andres Trikkel
Approximately one million tons of semicoke (SC) is formed and stored in open air dumps every year in the production of shale oil by processing Estonian oil shale (OS). The content of different harmful compounds as sulphides, PAH, phenols, etc. in SC make these dumps one of the most serious sources of environmental contamination. The aim of this work was to study the behaviour of sulphur compounds in OS and its SC, formation of SO2 and possibilities of binding it into the solid phase during thermooxidation of fuel blends based on SC. Blends modified with SC ash addition were studied as well. It was determined that SO2 emission in thermooxidation of SC samples started at 280-300°C and proceeded with a steady speed up to 580-600°C and the amount of sulphur evolved was 5-10% from the total content of sulphur in the sample. The amount of SO2 emitted decreased depending on the mass ratio of the composite fuels from 49-56 to 15-35% during thermooxidation of OS samples studied or their blends with SC, respectively, from 43-80% for coal samples to 13-60% for their blends with SC and to 2-13% during thermooxidation of these blends modified with SC ash addition. In the products of thermooxidation formed at 800-900°C the only sulphur containing phase was CaSO4, at 650°C also traces of CaS and CaMg3(SO4)4 were fixed.
Journal of Biological Inorganic Chemistry | 2018
Kaia Tõnsuaadu; Michel Gruselle; Frieda Kriisa; Andres Trikkel; Patrick Gredin; Didier Villemin
Motivated by the role of copper ions in biological processes the aim of this study was to elucidate the impact of copper ions bound to hydroxyapatite on l-serine (l-Ser) and O-phospho-l-serine (O-Ph-l-Ser) adsorption at different acidity of aqueous solutions. The adsorption phenomenon was studied by FTIR, UV, and AA spectroscopy, XRD and thermal analysis methods together with the evolved gases analysis taking into consideration the ionic state of the amino acids as well as the apatite surface state, which are tightly correlated with the solution pH. In acidic solution, the main process involves apatite dissolution releasing calcium and copper ions. At pH > 5 the complexation of amino acids with Ca2+ or Cu2+ ions is more important leading also to the release of cations. The ability of copper ions to form water soluble complexes with l-Ser and O-Ph-l-Ser leads to an important loss of these ions, while calcium release is very low at this pH. Therefore, the use of copper ions substituting calcium in the apatite structure to enhance the ability of amino acids adsorption on the apatite surface seems problematic even at pH > 5.
Archive | 2009
Andres Trikkel; Merli Keelmann; Aljona Aranson; Rein Kuusik
Power production in Estonia is predominantly based on combustion of a local low-grade fossil fuel Estonian oil shale. Due to the high content of carbonaceous mineral matter in oil shale, its combustion is related to formation of lime-containing ashes (content of free CaO 10–30%) which could be utilized as sorbents for CO2. In the present research CO2 uptake by circulating fluidized bed and pulverized firing ashes from different technological devices (furnace, cyclones etc) of an operating power plant was studied and the effect of pre-treatment (grinding, calcination at different temperatures) of these ashes on their capture capacity was estimated using thermogravimetric, SEM, X-Ray and EDX analysis methods. It was found that capture capacities were determined mainly by free CaO content in the ashes, thereby, fluidized bed ashes showed higher CaO conversion levels (19.2–74.2%) as compared to pulverized firing ones (8.7–51.8%). Pre-treatment conditions influenced noticeably CO2 uptake. Grinding decreased CO2 capture capacity of fluidized bed ashes, calcination at higher temperatures decreased capture capacity of both types of ashes. Clarification of this phenomenon was given. Kinetic analysis of the process has been carried out, mechanism of the reactions and respective kinetic constants have been estimated.
Energy Procedia | 2009
Rein Kuusik; Andres Trikkel; Anders Lyngfelt; Tobias Mattisson
Fuel Processing Technology | 2008
Andres Trikkel; Rein Kuusik; Ants Martins; Tõnu Pihu; John M. Stencel
Journal of Thermal Analysis and Calorimetry | 2011
Tiit Kaljuvee; Merli Keelmann; Andres Trikkel; Rein Kuusik
Journal of Thermal Analysis and Calorimetry | 2005
Tiit Kaljuvee; Andres Trikkel; Rein Kuusik; V. Bender
Journal of Thermal Analysis and Calorimetry | 2013
Tiit Kaljuvee; Merli Keelman; Andres Trikkel; V. Petkova