Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrés Vázquez-Torres is active.

Publication


Featured researches published by Andrés Vázquez-Torres.


Journal of Biological Chemistry | 2006

Maintenance of Nitric Oxide and Redox Homeostasis by the Salmonella Flavohemoglobin Hmp

Iel Soo Bang; Limin Liu; Andrés Vázquez-Torres; Marie Laure V Crouch; Jonathan S. Stamler; Ferric C. Fang

Intracellular pathogens must resist the antimicrobial actions of nitric oxide (NO·) produced by host cells. To this end pathogens possess several NO·-metabolizing enzymes. Here we show that the flavohemoglobin Hmp is the principal enzyme responsible for aerobic NO· metabolism by Salmonella enterica serovar typhimurium. We further show that Hmp is required for Salmonella virulence in mice, in contrast to S-nitrosoglutathione reductase, flavorubredoxin, or cytochrome c nitrite reductase. Abrogation of murine-inducible NO· synthase restores virulence to hmp mutant bacteria. In the presence of nitrosative stress, Hmp-deficient Salmonella exhibits reduced NO· consumption, impaired growth, increased protein S-nitrosylation, and filamentous morphology. However, under aerobic conditions in the absence of nitrosative stress, elevated hmp expression increases S. typhimurium susceptibility to hydrogen peroxide. Both the heme binding and flavoreductase domains are required for resistance to NO·, whereas the flavoreductase domain is responsible for iron-dependent susceptibility to oxidative stress. This provides a rationale for the regulation of hmp expression by the transcriptional repressor NsrR in response to both nitrosative stress and intracellular free iron concentration. The Hmp flavohemoglobin plays a central role in the response of Salmonella to nitrosative stress but requires precise regulation to avoid the exacerbation of oxidative stress that can result if electrons are shuttled to extraneous iron.


Infection and Immunity | 2004

The Ferritin-Like Dps Protein Is Required for Salmonella enterica Serovar Typhimurium Oxidative Stress Resistance and Virulence

Thomas A. Halsey; Andrés Vázquez-Torres; Daniel J. Gravdahl; Ferric C. Fang; Stephen J. Libby

ABSTRACT Resistance to phagocyte-derived reactive oxygen species is essential for Salmonella enterica serovar Typhimurium pathogenesis. Salmonella can enhance its resistance to oxidants through the induction of specific genetic pathways controlled by SoxRS, OxyR, σS, σE, SlyA, and RecA. These regulons can be found in a wide variety of pathogenic and environmental bacteria, suggesting that evolutionarily conserved mechanisms defend against oxidative stress both endogenously generated by aerobic respiration and exogenously produced by host phagocytic cells. Dps, a ferritin-like protein found in many eubacterial and archaebacterial species, appears to protect cells from oxidative stress by sequestering iron and limiting Fenton-catalyzed oxyradical formation. In Escherichia coli and some other bacterial species, Dps has been shown to accumulate during stationary phase in a σS-dependent fashion, bind nonspecifically to DNA, and form a crystalline structure that compacts and protects chromatin from oxidative damage. In the present study, we provide evidence that Dps protects Salmonella from iron-dependent killing by hydrogen peroxide, promotes Salmonella survival in murine macrophages, and enhances Salmonella virulence. Reduced numbers of dps mutant bacteria in the livers and spleens of infected mice are consistent with a role of Dps in protecting Salmonella from oxidative stress encountered during infection.


Nature Medicine | 1995

|[gamma]||[delta]| T cell-induced nitric oxide production enhances resistance to mucosal candidiasis

Jessica Jones-Carson; Andrés Vázquez-Torres; Henri C. van der Heyde; Thomas F. Warner; R. Doug Wagner; Edward Balish

Despite the prevalence of γδ T cells in mucosae that are typically colonized by Candida albicans, little is known of the possible role of these cells in resistance to candidiasis. A sharp increase in the number of γδ T cells and macrophages following intraperitoneal inoculation of mice with C. albicans led us to examine the role of these cells in the immune response to C. albicans. We show that the γδT cells enhance macrophage nitric oxide (NO) production and anti-candida activity, in vitro. We also propose that the γδ T cells regulate macrophage function during candidiasis in vivo as well, because depletion of these cells abrogated inducible NO synthase expression in mucosae and enhanced murine susceptibility to candidiasis.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Defective localization of the NADPH phagocyte oxidase to Salmonella-containing phagosomes in tumor necrosis factor p55 receptor-deficient macrophages

Andrés Vázquez-Torres; Giamila Fantuzzi; Carl K. Edwards; Charles A. Dinarello; Ferric C. Fang

Tumor necrosis factor receptor (TNFR) p55-knockout (KO) mice are susceptible profoundly to Salmonella infection. One day after peritoneal inoculation, TNFR-KO mice harbor 1,000-fold more bacteria in liver and spleen than wild-type mice despite the formation of well organized granulomas. Macrophages from TNFR-KO mice produce abundant quantities of reactive oxygen and nitrogen species in response to Salmonella but nevertheless exhibit poor bactericidal activity. Treatment with IFN-γ enhances killing by wild-type macrophages but does not restore the killing defect of TNFR-KO cells. Bactericidal activity of macrophages can be abrogated by a deletion in the gene encoding TNFα but not by saturating concentrations of TNF-soluble receptor, suggesting that intracellular TNFα can regulate killing of Salmonella by macrophages. Peritoneal macrophages from TNFR-KO mice fail to localize NADPH oxidase-containing vesicles to Salmonella-containing vacuoles. A TNFR-KO mutation substantially restores virulence to an attenuated mutant bacterial strain lacking the type III secretory system encoded by Salmonella pathogenicity island 2 (SPI2), suggesting that TNFα and SPI2 have opposing actions on a common pathway of vesicular trafficking. TNFα–TNFRp55 signaling plays a critical role in the immediate innate immune response to an intracellular pathogen by optimizing the delivery of toxic reactive oxygen species to the phagosome.


Journal of Bacteriology | 2007

FNR Is a Global Regulator of Virulence and Anaerobic Metabolism in Salmonella enterica Serovar Typhimurium (ATCC 14028s)

Ryan C. Fink; Matthew R. Evans; Steffen Porwollik; Andrés Vázquez-Torres; Jessica Jones-Carson; Bryan Troxell; Stephen J. Libby; Michael McClelland; Hosni M. Hassan

Salmonella enterica serovar Typhimurium must successfully transition the broad fluctuations in oxygen concentrations encountered in the host. In Escherichia coli, FNR is one of the main regulatory proteins involved in O2 sensing. To assess the role of FNR in serovar Typhimurium, we constructed an isogenic fnr mutant in the virulent wild-type strain (ATCC 14028s) and compared their transcriptional profiles and pathogenicities in mice. Here, we report that, under anaerobic conditions, 311 genes (6.80% of the genome) are regulated directly or indirectly by FNR; of these, 87 genes (28%) are poorly characterized. Regulation by FNR in serovar Typhimurium is similar to, but distinct from, that in E. coli. Thus, genes/operons involved in aerobic metabolism, NO. detoxification, flagellar biosynthesis, motility, chemotaxis, and anaerobic carbon utilization are regulated by FNR in a fashion similar to that in E. coli. However, genes/operons existing in E. coli but regulated by FNR only in serovar Typhimurium include those coding for ethanolamine utilization, a universal stress protein, a ferritin-like protein, and a phosphotransacetylase. Interestingly, Salmonella-specific genes/operons regulated by FNR include numerous virulence genes within Salmonella pathogenicity island 1 (SPI-1), newly identified flagellar genes (mcpAC, cheV), and the virulence operon (srfABC). Furthermore, the role of FNR as a positive regulator of motility, flagellar biosynthesis, and pathogenesis was confirmed by showing that the mutant is nonmotile, lacks flagella, is attenuated in mice, and does not survive inside macrophages. The inability of the mutant to survive inside macrophages is likely due to its sensitivity to the reactive oxygen species generated by NADPH phagocyte oxidase.


Journal of Bacteriology | 2011

Fur Negatively Regulates hns and Is Required for the Expression of HilA and Virulence in Salmonella enterica Serovar Typhimurium

Bryan Troxell; Michael L. Sikes; Ryan C. Fink; Andrés Vázquez-Torres; Jessica Jones-Carson; Hosni M. Hassan

Iron is an essential element for the survival of living cells. However, excess iron is toxic, and its uptake is exquisitely regulated by the ferric uptake regulator, Fur. In Salmonella, the Salmonella pathogenicity island 1 (SPI-1) encodes a type three secretion system, which is required for invasion of host epithelial cells in the small intestine. A major activator of SPI-1 is HilA, which is encoded within SPI-1. One known regulator of hilA is Fur. The mechanism of hilA regulation by Fur is unknown. We report here that Fur is required for virulence in Salmonella enterica serovar Typhimurium and that Fur is required for the activation of hilA, as well as of other HilA-dependent genes, invF and sipC. The Fur-dependent regulation of hilA was independent of PhoP, a known repressor of hilA. Instead, the expression of the gene coding for the histone-like protein, hns, was significantly derepressed in the fur mutant. Indeed, the activation of hilA by Fur was dependent on 28 nucleotides located upstream of hns. Moreover, we used chromatin immunoprecipitation to show that Fur bound, in vivo, to the upstream region of hns in a metal-dependent fashion. Finally, deletion of fur in an hns mutant resulted in Fur-independent activation of hilA. In conclusion, Fur activates hilA by repressing the expression of hns.


Journal of Biological Chemistry | 2008

Nitric oxide evokes an adaptive response to oxidative stress by arresting respiration

Maroof Husain; Travis J. Bourret; Bruce D. McCollister; Jessica Jones-Carson; James R. Laughlin; Andrés Vázquez-Torres

Aerobic metabolism generates biologically challenging reactive oxygen species (ROS) by the endogenous autooxidation of components of the electron transport chain (ETC). Basal levels of oxidative stress can dramatically rise upon activation of the NADPH oxidase-dependent respiratory burst. To minimize ROS toxicity, prokaryotic and eukaryotic organisms express a battery of low-molecular-weight thiol scavengers, a legion of detoxifying catalases, peroxidases, and superoxide dismutases, as well as a variety of repair systems. We present herein blockage of bacterial respiration as a novel strategy that helps the intracellular pathogen Salmonella survive extreme oxidative stress conditions. A Salmonella strain bearing mutations in complex I NADH dehydrogenases is refractory to the early NADPH oxidase-dependent antimicrobial activity of IFNγ-activated macrophages. The ability of NADH-rich, complex I-deficient Salmonella to survive oxidative stress is associated with resistance to peroxynitrite (ONOO-) and hydrogen peroxide (H2O2). Inhibition of respiration with nitric oxide (NO) also triggered a protective adaptive response against oxidative stress. Expression of the NDH-II dehydrogenase decreases NADH levels, thereby abrogating resistance of NO-adapted Salmonella to H2O2. NADH antagonizes the hydroxyl radical (OH·) generated in classical Fenton chemistry or spontaneous decomposition of peroxynitrous acid (ONOOH), while fueling AhpCF alkylhydroperoxidase. Together, these findings identify the accumulation of NADH following the NO-mediated inhibition of Salmonellas ETC as a novel antioxidant strategy. NO-dependent respiratory arrest may help mitochondria and a plethora of organisms cope with oxidative stress engendered in situations as diverse as aerobic respiration, ischemia reperfusion, and inflammation.


Frontiers in Microbiology | 2011

Nitric Oxide and Salmonella Pathogenesis

Calvin A. Henard; Andrés Vázquez-Torres

Nitric oxide (NO) and its congeners contribute to the innate immune response to Salmonella. This enteric pathogen is exposed to reactive nitrogen species (RNS) in the environment and at different anatomical locations during its infectious cycle in vertebrate hosts. Chemical generation of RNS enhances the gastric barrier to enteropathogenic bacteria, while products of the Salmonella pathogenicity island 1 type III secretion system and Salmonella-associated molecular patterns stimulate transcription of inducible NO synthase (iNOS) by cells of the mononuclear phagocytic cell lineage. The resulting NO, or products that arise from its interactions with oxygen (O2) or iron and low-molecular weight thiols, are preferentially bacteriostatic against Salmonella, while reaction of NO and superoxide (O2−) generates the bactericidal compound peroxynitrite (ONOO−). The anti-Salmonella activity of RNS emanates from the modification of redox active thiols and metal prosthetic groups of key molecular targets of the electron transport chain, central metabolic enzymes, transcription factors, and DNA and DNA-associated proteins. In turn, Salmonella display a plethora of defenses that modulate the delivery of iNOS-containing vesicles to phagosomes, scavenge and detoxify RNS, and repair biomolecules damaged by these toxic species. Traditionally, RNS have been recognized as important mediators of host defense against Salmonella. However, exciting new findings indicate that Salmonella can exploit the RNS produced during the infection to foster virulence. More knowledge of the primary RNS produced in response to Salmonella infection, the bacterial processes affected by these toxic species, and the adaptive bacterial responses that protect Salmonella from nitrosative and oxidative stress associated with NO will increase our understanding of Salmonella pathogenesis. This information may assist in the development of novel therapeutics against this common enteropathogen.


Antimicrobial Agents and Chemotherapy | 2011

Nitric Oxide Protects Bacteria from Aminoglycosides by Blocking the Energy-Dependent Phases of Drug Uptake

Bruce D. McCollister; Matthew Hoffman; Maroof Husain; Andrés Vázquez-Torres

ABSTRACT Our investigations have identified a mechanism by which exogenous production of nitric oxide (NO) induces resistance of Gram-positive and -negative bacteria to aminoglycosides. An NO donor was found to protect Salmonella spp. against structurally diverse classes of aminoglycosides of the 4,6-disubstituted 2-deoxystreptamine group. Likewise, NO generated enzymatically by inducible NO synthase of gamma interferon-primed macrophages protected intracellular Salmonella against the cytotoxicity of gentamicin. NO levels that elicited protection against aminoglycosides repressed Salmonella respiratory activity. NO nitrosylated terminal quinol cytochrome oxidases, without exerting long-lasting inhibition of NADH dehydrogenases of the electron transport chain. The NO-mediated repression of respiratory activity blocked both energy-dependent phases I and II of aminoglycoside uptake but not the initial electrostatic interaction of the drug with the bacterial cell envelope. As seen in Salmonella, the NO-dependent inhibition of the electron transport chain also afforded aminoglycoside resistance to the clinically important pathogens Pseudomonas aeruginosa and Staphylococcus aureus. Together, these findings provide evidence for a model in which repression of aerobic respiration by NO fluxes associated with host inflammatory responses can reduce drug uptake, thus promoting resistance to several members of the aminoglycoside family in phylogenetically diverse bacteria.


BMC Microbiology | 2011

Analysis of the ArcA regulon in anaerobically grown Salmonella enterica sv. Typhimurium

Matthew R. Evans; Ryan C. Fink; Andrés Vázquez-Torres; Steffen Porwollik; Jessica Jones-Carson; Michael McClelland; Hosni M. Hassan

BackgroundSalmonella enterica serovar Typhimurium (S. Typhimurium) is a Gram-negative pathogen that must successfully adapt to the broad fluctuations in the concentration of dissolved dioxygen encountered in the host. In Escherichia coli, ArcA (Aerobic Respiratory Control) helps the cells to sense and respond to the presence of dioxygen. The global role of ArcA in E. coli is well characterized; however, little is known about its role in anaerobically grown S. Typhimurium.ResultsWe compared the transcriptional profiles of the virulent wild-type (WT) strain (ATCC 14028s) and its isogenic arcA mutant grown under anaerobic conditions. We found that ArcA directly or indirectly regulates 392 genes (8.5% of the genome); of these, 138 genes are poorly characterized. Regulation by ArcA in S. Typhimurium is similar, but distinct from that in E. coli. Thus, genes/operons involved in core metabolic pathways (e.g., succinyl-CoA, fatty acid degradation, cytochrome oxidase complexes, flagellar biosynthesis, motility, and chemotaxis) were regulated similarly in the two organisms. However, genes/operons present in both organisms, but regulated differently by ArcA in S. Typhimurium included those coding for ethanolamine utilization, lactate transport and metabolism, and succinate dehydrogenases. Salmonella-specific genes/operons regulated by ArcA included those required for propanediol utilization, flagellar genes (mcpAC, cheV), Gifsy-1 prophage genes, and three SPI-3 genes (mgtBC, slsA, STM3784). In agreement with our microarray data, the arcA mutant was non-motile, lacked flagella, and was as virulent in mice as the WT. Additionally, we identified a set of 120 genes whose regulation was shared with the anaerobic redox regulator, Fnr.Conclusion(s)We have identified the ArcA regulon in anaerobically grown S. Typhimurium. Our results demonstrated that in S. Typhimurium, ArcA serves as a transcriptional regulator coordinating cellular metabolism, flagella biosynthesis, and motility. Furthermore, ArcA and Fnr share in the regulation of 120 S. Typhimurium genes.

Collaboration


Dive into the Andrés Vázquez-Torres's collaboration.

Top Co-Authors

Avatar

Jessica Jones-Carson

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Ferric C. Fang

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Lin Liu

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Calvin A. Henard

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Maroof Husain

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Timothy Tapscott

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Bruce D. McCollister

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Edward Balish

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Travis J. Bourret

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Miryoung Song

University of Colorado Denver

View shared research outputs
Researchain Logo
Decentralizing Knowledge