Andrew A. Dwyer
University of Lausanne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrew A. Dwyer.
Journal of Clinical Investigation | 2008
John Falardeau; Wilson C. J. Chung; Andrew Beenken; Taneli Raivio; Lacey Plummer; Yisrael Sidis; Elka Jacobson-Dickman; Anna V. Eliseenkova; Jinghong Ma; Andrew A. Dwyer; Richard Quinton; Sandra Na; Janet E. Hall; Céline Huot; Natalie Alois; Simon Pearce; Lindsay W. Cole; Virginia A. Hughes; Moosa Mohammadi; Pei Tsai; Nelly Pitteloud
Idiopathic hypogonadotropic hypogonadism (IHH) with anosmia (Kallmann syndrome; KS) or with a normal sense of smell (normosmic IHH; nIHH) are heterogeneous genetic disorders associated with deficiency of gonadotropin-releasing hormone (GnRH). While loss-of-function mutations in FGF receptor 1 (FGFR1) cause human GnRH deficiency, to date no specific ligand for FGFR1 has been identified in GnRH neuron ontogeny. Using a candidate gene approach, we identified 6 missense mutations in FGF8 in IHH probands with variable olfactory phenotypes. These patients exhibited varied degrees of GnRH deficiency, including the rare adult-onset form of hypogonadotropic hypogonadism. Four mutations affected all 4 FGF8 splice isoforms (FGF8a, FGF8b, FGF8e, and FGF8f), while 2 mutations affected FGF8e and FGF8f isoforms only. The mutant FGF8b and FGF8f ligands exhibited decreased biological activity in vitro. Furthermore, mice homozygous for a hypomorphic Fgf8 allele lacked GnRH neurons in the hypothalamus, while heterozygous mice showed substantial decreases in the number of GnRH neurons and hypothalamic GnRH peptide concentration. In conclusion, we identified FGF8 as a gene implicated in GnRH deficiency in both humans and mice and demonstrated an exquisite sensitivity of GnRH neuron development to reductions in FGF8 signaling.
Journal of Clinical Investigation | 2007
Nelly Pitteloud; Richard Quinton; Simon Pearce; Taneli Raivio; James S. Acierno; Andrew A. Dwyer; Lacey Plummer; Virginia A. Hughes; Stephanie B. Seminara; Yu-Zhu Cheng; Wei-Ping Li; Gavin S. MacColl; Anna V. Eliseenkova; Shaun K. Olsen; Omar A. Ibrahimi; Frances J. Hayes; Paul A. Boepple; Janet E. Hall; Pierre Bouloux; Moosa Mohammadi; William F. Crowley
Idiopathic hypogonadotropic hypogonadism (IHH) due to defects of gonadotropin-releasing hormone (GnRH) secretion and/or action is a developmental disorder of sexual maturation. To date, several single-gene defects have been implicated in the pathogenesis of IHH. However, significant inter- and intrafamilial variability and apparent incomplete penetrance in familial cases of IHH are difficult to reconcile with the model of a single-gene defect. We therefore hypothesized that mutations at different IHH loci interact in some families to modify their phenotypes. To address this issue, we studied 2 families, one with Kallmann syndrome (IHH and anosmia) and another with normosmic IHH, in which a single-gene defect had been identified: a heterozygous FGF receptor 1 (FGFR1) mutation in pedigree 1 and a compound heterozygous gonadotropin-releasing hormone receptor (GNRHR) mutation in pedigree 2, both of which varied markedly in expressivity within and across families. Further candidate gene screening revealed a second heterozygous deletion in the nasal embryonic LHRH factor (NELF) gene in pedigree 1 and an additional heterozygous FGFR1 mutation in pedigree 2 that accounted for the considerable phenotypic variability. Therefore, 2 different gene defects can synergize to produce a more severe phenotype in IHH families than either alone. This genetic model could account for some phenotypic heterogeneity seen in GnRH deficiency.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Gerasimos P. Sykiotis; Lacey Plummer; Virginia A. Hughes; Margaret G. Au; Sadia Durrani; Sadhana Nayak-Young; Andrew A. Dwyer; Richard Quinton; Janet E. Hall; James F. Gusella; Stephanie B. Seminara; William F. Crowley; Nelly Pitteloud
Between the genetic extremes of rare monogenic and common polygenic diseases lie diverse oligogenic disorders involving mutations in more than one locus in each affected individual. Elucidating the principles of oligogenic inheritance and mechanisms of genetic interactions could help unravel the newly appreciated role of rare sequence variants in polygenic disorders. With few exceptions, however, the precise genetic architecture of oligogenic diseases remains unknown. Isolated gonadotropin-releasing hormone (GnRH) deficiency caused by defective secretion or action of hypothalamic GnRH is a rare genetic disease that manifests as sexual immaturity and infertility. Recent reports of patients who harbor pathogenic rare variants in more than one gene have challenged the long-held view that the disorder is strictly monogenic, yet the frequency and extent of oligogenicity in isolated GnRH deficiency have not been investigated. By systematically defining genetic variants in large cohorts of well-phenotyped patients (n = 397), family members, and unaffected subjects (n = 179) for the majority of known disease genes, this study suggests a significant role of oligogenicity in this disease. Remarkably, oligogenicity in isolated GnRH deficiency was as frequent as homozygosity/compound heterozygosity at a single locus (2.5%). Among the 22% of patients with detectable rare protein-altering variants, the likelihood of oligogenicity was 11.3%. No oligogenicity was detected among controls (P < 0.05), even though deleterious variants were present. Viewing isolated GnRH deficiency as an oligogenic condition has implications for understanding the pathogenesis of its reproductive and nonreproductive phenotypes; deciphering the etiology of common GnRH-related disorders; and modeling the genetic architecture of other oligogenic and multifactorial diseases.
The Journal of Clinical Endocrinology and Metabolism | 2010
Elena Gianetti; Cintia Tusset; Sekoni D. Noel; Margaret G. Au; Andrew A. Dwyer; Virginia A. Hughes; Ana Paula Abreu; Jessica Carroll; Ericka B. Trarbach; Leticia Ferreira Gontijo Silveira; Elaine Maria Frade Costa; Berenice B. Mendonca; Margaret de Castro; Adriana Lofrano; Janet E. Hall; Erol Bolu; Metin Ozata; Richard Quinton; John K. Amory; Susan E. Stewart; Wiebke Arlt; Trevor R. Cole; William F. Crowley; Ursula B. Kaiser; Ana Claudia Latronico; Stephanie B. Seminara
CONTEXT Mutations in TAC3 and TACR3 (encoding neurokinin B and its receptor) have been identified in Turkish patients with idiopathic hypogonadotropic hypogonadism (IHH), but broader populations have not yet been tested and genotype-phenotype correlations have not been established. OBJECTIVE A broad cohort of normosmic IHH probands was screened for mutations in TAC3/TACR3 to evaluate the prevalence of such mutations and define the genotype/phenotype relationships. DESIGN AND SETTING The study consisted of sequencing of TAC3/TACR3, in vitro functional assays, and neuroendocrine phenotyping conducted in tertiary care centers worldwide. PATIENTS OR OTHER PARTICIPANTS 345 probands, 18 family members, and 292 controls were studied. INTERVENTION Reproductive phenotypes throughout reproductive life and before and after therapy were examined. MAIN OUTCOME MEASURE Rare sequence variants in TAC3/TACR3 were detected. RESULTS In TACR3, 19 probands harbored 13 distinct coding sequence rare nucleotide variants [three nonsense mutations, six nonsynonymous, four synonymous (one predicted to affect splicing)]. In TAC3, one homozygous single base pair deletion was identified, resulting in complete loss of the neurokinin B decapeptide. Phenotypic information was available on 16 males and seven females with coding sequence variants in TACR3/TAC3. Of the 16 males, 15 had microphallus; none of the females had spontaneous thelarche. Seven of the 16 males and five of the seven females were assessed after discontinuation of therapy; six of the seven males and four of the five females demonstrated evidence for reversibility of their hypogonadotropism. CONCLUSIONS Mutations in the neurokinin B pathway are relatively common as causes of hypogonadism. Although the neurokinin B pathway appears essential during early sexual development, its importance in sustaining the integrity of the hypothalamic-pituitary-gonadal axis appears attenuated over time.
The Journal of Clinical Endocrinology and Metabolism | 2008
Lindsay W. Cole; Yisrael Sidis; Chengkang Zhang; Richard Quinton; Lacey Plummer; Duarte Pignatelli; Virginia A. Hughes; Andrew A. Dwyer; Taneli Raivio; Frances J. Hayes; Stephanie B. Seminara; Céline Huot; Nathalie Alos; Phyllis W. Speiser; Akira Takeshita; Guy VanVliet; Simon Pearce; William F. Crowley; Qun-Yong Zhou; Nelly Pitteloud
CONTEXT Mice deficient in prokineticin 2(PROK2) and prokineticin receptor2 (PROKR2) exhibit variable olfactory bulb dysgenesis and GnRH neuronal migration defects reminiscent of human GnRH deficiency. OBJECTIVES We aimed to screen a large cohort of patients with Kallmann syndrome (KS) and normosmic idiopathic hypogonadotropic hypogonadism (IHH) for mutations in PROK2/PROKR2, evaluate their prevalence, define the genotype/phenotype relationship, and assess the functionality of these mutant alleles in vitro. DESIGN Sequencing of the PROK2 and PROKR2 genes was performed in 170 KS patients and 154 nIHH. Mutations were examined using early growth response 1-luciferase assays in HEK 293 cells and aequorin assays in Chinese hamster ovary cells. RESULTS Four heterozygous and one homozygous PROK2 mutation (p.A24P, p.C34Y, p.I50M, p.R73C, and p.I55fsX1) were identified in five probands. Four probands had KS and one nIHH, and all had absent puberty. Each mutant peptide impaired receptor signaling in vitro except the I50M. There were 11 patients who carried a heterozygous PROKR2 mutation (p.R85C, p.Y113H, p.V115M, p.R164Q, p.L173R, p.W178S, p.S188L, p.R248Q, p.V331M, and p.R357W). Among them, six had KS, four nIHH, and one KS proband carried both a PROKR2 (p.V115M) and PROK2 (p.A24P) mutation. Reproductive phenotypes ranged from absent to partial puberty to complete reversal of GnRH deficiency after discontinuation of therapy. All mutant alleles appear to decrease intracellular calcium mobilization; seven exhibited decreased MAPK signaling, and six displayed decreased receptor expression. Nonreproductive phenotypes included fibrous dysplasia, sleep disorder, synkinesia, and epilepsy. Finally, considerable variability was evident in family members with the same mutation, including asymptomatic carriers. CONCLUSION Loss-of-function mutations in PROK2 and PROKR2 underlie both KS and nIHH.
Nature Reviews Endocrinology | 2015
Ulrich Boehm; Pierre Bouloux; Mehul T. Dattani; Nicolas de Roux; Catherine Dodé; Leo Dunkel; Andrew A. Dwyer; Paolo Giacobini; Jean Pierre Hardelin; Anders Juul; Mohamad Maghnie; Nelly Pitteloud; Vincent Prevot; Taneli Raivio; Manuel Tena-Sempere; Richard Quinton; Jacques Young
Congenital hypogonadotropic hypogonadism (CHH) is a rare disorder caused by the deficient production, secretion or action of gonadotropin-releasing hormone (GnRH), which is the master hormone regulating the reproductive axis. CHH is clinically and genetically heterogeneous, with >25 different causal genes identified to date. Clinically, the disorder is characterized by an absence of puberty and infertility. The association of CHH with a defective sense of smell (anosmia or hyposmia), which is found in ∼50% of patients with CHH is termed Kallmann syndrome and results from incomplete embryonic migration of GnRH-synthesizing neurons. CHH can be challenging to diagnose, particularly when attempting to differentiate it from constitutional delay of puberty. A timely diagnosis and treatment to induce puberty can be beneficial for sexual, bone and metabolic health, and might help minimize some of the psychological effects of CHH. In most cases, fertility can be induced using specialized treatment regimens and several predictors of outcome have been identified. Patients typically require lifelong treatment, yet ∼10–20% of patients exhibit a spontaneous recovery of reproductive function. This Consensus Statement summarizes approaches for the diagnosis and treatment of CHH and discusses important unanswered questions in the field.
Molecular and Cellular Endocrinology | 2006
Nelly Pitteloud; Astrid U. Meysing; Richard Quinton; James S. Acierno; Andrew A. Dwyer; Lacey Plummer; Eric Fliers; Paul A. Boepple; Frances J. Hayes; Stephanie B. Seminara; Viriginia A. Hughes; Jinghong Ma; Pierre Bouloux; Moosa Mohammadi; William F. Crowley
BACKGROUND Kallmanns syndrome (KS) is a clinically and genetically heterogeneous disorder consisting of idiopathic hypogonadotropic hypogonadism (IHH) and anosmia. Mutations in KAL1 causing the X-linked form of KS have been identified in 10% of all KS patients and consistently result in a severe reproductive phenotype. KAL1 gene encodes for anosmin-1, a key protein involved in olfactory and GnRH neuronal migration through a putative interaction with FGFR1. Heterozygous mutations in the FGFR1 gene accompanied by a high frequency of cleft palate and other facial dysmorphisms were recently identified in 8% of a large KS cohort, yet the reproductive phenotype of KS patients harboring FGFR1 mutations has not been described. RESULTS One hundred and fifty probands with KS (130 males and 20 females) were studied to determine the frequency and distribution of FGFR1 mutations and their detailed reproductive phenotypes. Fifteen heterozygous mutations in unrelated probands were identified. Twelve missense mutations (p.R78C, p.V102I, p.D224H, p.G237D, p.R254Q, p.V273M, p.E274G, p.Y339C, p.S346C, p.I538V, p.G703S and p.G703R) were distributed among the first, second and third immunoglobulin-like domains (D1-D3), as well as the tyrosine kinase domain (TKD). The mutations Y339C and S346C are located in exon 8B and code for the isoform FGFR1c. Additionally, two nonsense mutations (p.T585X and p.R622X) were documented in the TKD of the protein. A wide spectrum of reproductive function was observed among KS probands including: (1) a severe phenotype demonstrated by microphallus, cryptorchidism, no pubertal development, undetectable serum gonadotropins and low serum testosterone (T) and inhibin B; (2) partial pubertal development; (3) the fertile eunuch variant of IHH with normal testicular size and active spermatogenesis with a reversal of HH after T therapy. In addition, we found an even wider spectrum of reproductive function within pedigrees carrying an FGFR1 mutation ranging from IHH to delayed puberty to normal reproductive function (anosmia only or asymptomatic carriers). These observations strongly suggest a role for other genes that modify the phenotype of FGFR1 mutations. CONCLUSION KS patients and family members carrying an FGFR1 mutation present a broad spectrum of pubertal development in contrast to the almost uniform severe clinical phenotype described in KS subjects with a KAL1 mutation. Additionally, this report implicates the isoform FGFR1c in the pathogenesis of KS.
The New England Journal of Medicine | 2013
David H. Margolin; Maria Kousi; Yee-Ming Chan; Elaine T. Lim; Jeremy D. Schmahmann; Marios Hadjivassiliou; Janet E. Hall; Ibrahim Adam; Andrew A. Dwyer; Lacey Plummer; Stephanie V. Aldrin; Julia O'Rourke; Andrew Kirby; Kasper Lage; Aubrey Milunsky; Jeff M. Milunsky; Jennifer A. Chan; E. Tessa Hedley-Whyte; Mark J. Daly; Nicholas Katsanis; Stephanie B. Seminara
BACKGROUND The combination of ataxia and hypogonadism was first described more than a century ago, but its genetic basis has remained elusive. METHODS We performed whole-exome sequencing in a patient with ataxia and hypogonadotropic hypogonadism, followed by targeted sequencing of candidate genes in similarly affected patients. Neurologic and reproductive endocrine phenotypes were characterized in detail. The effects of sequence variants and the presence of an epistatic interaction were tested in a zebrafish model. RESULTS Digenic homozygous mutations in RNF216 and OTUD4, which encode a ubiquitin E3 ligase and a deubiquitinase, respectively, were found in three affected siblings in a consanguineous family. Additional screening identified compound heterozygous truncating mutations in RNF216 in an unrelated patient and single heterozygous deleterious mutations in four other patients. Knockdown of rnf216 or otud4 in zebrafish embryos induced defects in the eye, optic tectum, and cerebellum; combinatorial suppression of both genes exacerbated these phenotypes, which were rescued by nonmutant, but not mutant, human RNF216 or OTUD4 messenger RNA. All patients had progressive ataxia and dementia. Neuronal loss was observed in cerebellar pathways and the hippocampus; surviving hippocampal neurons contained ubiquitin-immunoreactive intranuclear inclusions. Defects were detected at the hypothalamic and pituitary levels of the reproductive endocrine axis. CONCLUSIONS The syndrome of hypogonadotropic hypogonadism, ataxia, and dementia can be caused by inactivating mutations in RNF216 or by the combination of mutations in RNF216 and OTUD4. These findings link disordered ubiquitination to neurodegeneration and reproductive dysfunction and highlight the power of whole-exome sequencing in combination with functional studies to unveil genetic interactions that cause disease. (Funded by the National Institutes of Health and others.).
Trends in Endocrinology and Metabolism | 2011
Anna Mitchell; Andrew A. Dwyer; Nelly Pitteloud; Richard Quinton
Idiopathic hypogonadotropic hypogonadism (IHH) is defined by absent or incomplete puberty and characterised biochemically by low levels of sex steroids, with low or inappropriately normal gonadotropin hormones. IHH is frequently accompanied by non-reproductive abnormalities, most commonly anosmia, which is present in 50-60% of cases and defines Kallmann syndrome. The understanding of IHH has undergone rapid evolution, both in respect of genetics and breadth of phenotype. Once considered in monogenic Mendelian terms, it is now more coherently understood as a complex genetic condition. Oligogenic and complex genetic-environmental interactions have now been identified, with physiological and environmental factors interacting in genetically susceptible individuals to alter the clinical course and phenotype. These potentially link IHH to ancient evolutionary pressures on the ancestral human genome.
The Journal of Clinical Endocrinology and Metabolism | 2012
Taneli Raivio; Magdalena Avbelj; Mark J. McCabe; Christopher J. Romero; Andrew A. Dwyer; Johanna Tommiska; Gerasimos P. Sykiotis; Louise Gregory; Daniel Diaczok; Vaitsa Tziaferi; Mariet W. Elting; Raja Padidela; Lacey Plummer; Cecilia Martin; Bihua Feng; Chengkang Zhang; Qun-Yong Zhou; Huaibin Chen; Moosa Mohammadi; Richard Quinton; Yisrael Sidis; Sally Radovick; Mehul T. Dattani; Nelly Pitteloud
CONTEXT Kallmann syndrome (KS), combined pituitary hormone deficiency (CPHD), and septo-optic dysplasia (SOD) all result from development defects of the anterior midline in the human forebrain. OBJECTIVE The objective of the study was to investigate whether KS, CPHD, and SOD have shared genetic origins. DESIGN AND PARTICIPANTS A total of 103 patients with either CPHD (n = 35) or SOD (n = 68) were investigated for mutations in genes implicated in the etiology of KS (FGFR1, FGF8, PROKR2, PROK2, and KAL1). Consequences of identified FGFR1, FGF8, and PROKR2 mutations were investigated in vitro. RESULTS Three patients with SOD had heterozygous mutations in FGFR1; these were either shown to alter receptor signaling (p.S450F, p.P483S) or predicted to affect splicing (c.336C>T, p.T112T). One patient had a synonymous change in FGF8 (c.216G>A, p.T72T) that was shown to affect splicing and ligand signaling activity. Four patients with CPHD/SOD were found to harbor heterozygous rare loss-of-function variants in PROKR2 (p.R85G, p.R85H, p.R268C). CONCLUSIONS Mutations in FGFR1/FGF8/PROKR2 contributed to 7.8% of our patients with CPHD/SOD. These data suggest a significant genetic overlap between conditions affecting the development of anterior midline in the human forebrain.