Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew A. Quong is active.

Publication


Featured researches published by Andrew A. Quong.


Journal of Biological Chemistry | 2005

SIRT1 Deacetylation and Repression of p300 Involves Lysine Residues 1020/1024 within the Cell Cycle Regulatory Domain 1

Toula Bouras; Maofu Fu; Anthony A. Sauve; Fang Wang; Andrew A. Quong; Neil D. Perkins; Ronald T. Hay; Wei Gu; Richard G. Pestell

The SIR2 family of nicotinamide adenosine dinucleotide (NAD)-dependent deacetylases modulates diverse biological functions in different species, including longevity, apoptosis, cell cycle exit, and cellular differentiation. SIRT1, the closest mammalian ortholog of the yeast SIR2 (silent information regulator 2) gene, represses several transcription factors, including p53, NFκB and forkhead proteins. The p300 protein serves as a rate-limiting transcriptional cointegrator of diverse transcription factors either to activate or to repress transcription through modular subdomains. Herein, SIRT1 physically interacted with and repressed p300 transactivation, requiring the NAD-dependent deacetylase activity of SIRT1. SIRT1 repression involved the CRD1 transcriptional repression domain of p300. Two residues within the CRD1 domain (Lys-1020 and Lys-1024) were required for SIRT1 repression and served as substrates for SIRT1 deacetylation. These residues also serve as acceptor lysines for modification by the ubiquitin-like SUMO protein. The SUMO-specific protease SSP3 relieved SIRT1 repression of p300. SSP3 antagonism of SIRT1 required the SUMO-deconjugating function of SSP3. Thus, p300 serves as a deacetylase substrate for SIRT1 through a conserved SUMO consensus motif. Because p300 is a limiting transcriptional cofactor, deacetylation and repression of p300 by SIRT1 may serve an important integration point during metabolism and cellular differentiation.


Journal of Biological Chemistry | 2010

Anti-inflammatory compounds parthenolide and Bay 11-7082 are direct inhibitors of the inflammasome.

Christine Juliana; Teresa Fernandes-Alnemri; Jianghong Wu; Pinaki Datta; Leobaldo Solorzano; Je-Wook Yu; Rong Meng; Andrew A. Quong; Eicke Latz; Charles P. Scott; Emad S. Alnemri

Activation of the inflammasome generates the pro-inflammatory cytokines interleukin-1β and -18, which are important mediators of inflammation. Abnormal activation of the inflammasome leads to many inflammatory diseases, including gout, silicosis, neurodegeneration, and genetically inherited periodic fever syndromes. Therefore, identification of small molecule inhibitors that target the inflammasome is an important step toward developing effective therapeutics for the treatment of inflammation. Here, we show that the herbal NF-κB inhibitory compound parthenolide inhibits the activity of multiple inflammasomes in macrophages by directly inhibiting the protease activity of caspase-1. Additional investigations of other NF-κB inhibitors revealed that the synthetic IκB kinase-β inhibitor Bay 11-7082 and structurally related vinyl sulfone compounds selectively inhibit NLRP3 inflammasome activity in macrophages independent of their inhibitory effect on NF-κB activity. In vitro assays of the effect of parthenolide and Bay 11-7082 on the ATPase activity of NLRP3 demonstrated that both compounds inhibit the ATPase activity of NLRP3, suggesting that the inhibitory effect of these compounds on inflammasome activity could be mediated in part through their effect on the ATPase activity of NLRP3. Our results thus elucidate the molecular mechanism for the therapeutic anti-inflammatory activity of parthenolide and identify vinyl sulfones as a new class of potential therapeutics that target the NLRP3 inflammasome.


Journal of Cell Biology | 2006

Distinct p53 acetylation cassettes differentially influence gene-expression patterns and cell fate

Chad D. Knights; Jason Catania; Simone Di Giovanni; Selen C. Muratoglu; Ricardo Perez; Amber Swartzbeck; Andrew A. Quong; Xiaojing Zhang; Terry Beerman; Richard G. Pestell; Maria Laura Avantaggiati

The activity of the p53 gene product is regulated by a plethora of posttranslational modifications. An open question is whether such posttranslational changes act redundantly or dependently upon one another. We show that a functional interference between specific acetylated and phosphorylated residues of p53 influences cell fate. Acetylation of lysine 320 (K320) prevents phosphorylation of crucial serines in the NH2-terminal region of p53; only allows activation of genes containing high-affinity p53 binding sites, such as p21/WAF; and promotes cell survival after DNA damage. In contrast, acetylation of K373 leads to hyperphosphorylation of p53 NH2-terminal residues and enhances the interaction with promoters for which p53 possesses low DNA binding affinity, such as those contained in proapoptotic genes, leading to cell death. Further, acetylation of each of these two lysine clusters differentially regulates the interaction of p53 with coactivators and corepressors and produces distinct gene-expression profiles. By analogy with the “histone code” hypothesis, we propose that the multiple biological activities of p53 are orchestrated and deciphered by different “p53 cassettes,” each containing combination patterns of posttranslational modifications and protein–protein interactions.


Proceedings of the National Academy of Sciences of the United States of America | 2010

microRNA 17/20 inhibits cellular invasion and tumor metastasis in breast cancer by heterotypic signaling

Zuoren Yu; Nicole E. Willmarth; Jie Zhou; Sanjay Katiyar; Min Wang; Yang Liu; Peter McCue; Andrew A. Quong; Michael P. Lisanti; Richard G. Pestell

microRNAs are thought to regulate tumor progression and invasion via direct interaction with target genes within cells. Here the microRNA17/20 cluster is shown to govern cellular migration and invasion of nearby cells via heterotypic secreted signals. microRNA17/20 abundance is reduced in highly invasive breast cancer cell lines and node-positive breast cancer specimens. Cell-conditioned medium from microRNA17/20–overexpressing noninvasive breast cancer cell MCF7 was sufficient to inhibit MDA-MB-231 cell migration and invasion through inhibiting secretion of a subset of cytokines, and suppressing plasminogen activation via inhibition of the secreted plasminogen activators (cytokeratin 8 and α-enolase). microRNA17/20 directly repressed IL-8 by targeting its 3′ UTR, and inhibited cytokeratin 8 via the cell cycle control protein cyclin D1. At variance with prior studies, these results demonstrated a unique mechanism of how the altered microRNA17/20 expression regulates cellular secretion and tumor microenvironment to control migration and invasion of neighboring cells in breast cancer. These findings not only reveal an antiinvasive function of miR-17/20 in breast cancer, but also identify a heterotypic secreted signal that mediates the microRNA regulation of tumor metastasis.


Molecular and Cellular Biology | 2006

Hormonal Control of Androgen Receptor Function through SIRT1

Maofu Fu; Manran Liu; Anthony A. Sauve; Xuanmao Jiao; Xueping Zhang; Xiaofang Wu; Michael J. Powell; Tianle Yang; Wei Gu; Maria Laura Avantaggiati; Nagarajan Pattabiraman; Timothy G. Pestell; Fang Wang; Andrew A. Quong; Chenguang Wang; Richard G. Pestell

ABSTRACT The NAD-dependent histone deacetylase Sir2 plays a key role in connecting cellular metabolism with gene silencing and aging. The androgen receptor (AR) is a ligand-regulated modular nuclear receptor governing prostate cancer cellular proliferation, differentiation, and apoptosis in response to androgens, including dihydrotestosterone (DHT). Here, SIRT1 antagonists induce endogenous AR expression and enhance DHT-mediated AR expression. SIRT1 binds and deacetylates the AR at a conserved lysine motif. Human SIRT1 (hSIRT1) repression of DHT-induced AR signaling requires the NAD-dependent catalytic function of hSIRT1 and the AR lysine residues deacetylated by SIRT1. SIRT1 inhibited coactivator-induced interactions between the AR amino and carboxyl termini. DHT-induced prostate cancer cellular contact-independent growth is also blocked by SIRT1, providing a direct functional link between the AR, which is a critical determinant of progression of human prostate cancer, and the sirtuins.


Cancer Research | 2010

The Canonical NF-κB Pathway Governs Mammary Tumorigenesis in Transgenic Mice and Tumor Stem Cell Expansion

Manran Liu; Toshiyuki Sakamaki; Mathew C. Casimiro; Nicole E. Willmarth; Andrew A. Quong; Xiaoming Ju; John Ojeifo; Xuanmao Jiao; Wen Shuz Yeow; Sanjay Katiyar; L. Andrew Shirley; David A. Joyce; Michael P. Lisanti; Christopher Albanese; Richard G. Pestell

The role of mammary epithelial cell (MEC) NF-κB in tumor progression in vivo is unknown, as murine NF-κB components and kinases either are required for murine survival or interfere with normal mammary gland development. As NF-κB inhibitors block both tumor-associated macrophages (TAM) and MEC NF-κB, the importance of MEC NF-κB to tumor progression in vivo remained to be determined. Herein, an MEC-targeted inducible transgenic inhibitor of NF-κB (IκBαSR) was developed in ErbB2 mammary oncomice. Inducible suppression of NF-κB in the adult mammary epithelium delayed the onset and number of new tumors. Within similar sized breast tumors, TAM and tumor neoangiogenesis was reduced. Coculture experiments demonstrated MEC NF-κB enhanced TAM recruitment. Genome-wide expression and proteomic analysis showed that IκBαSR inhibited tumor stem cell pathways. IκBαSR inhibited breast tumor stem cell markers in transgenic tumors, reduced stem cell expansion in vitro, and repressed expression of Nanog and Sox2 in vivo and in vitro. MEC NF-κB contributes to mammary tumorigenesis. As we show that NF-κB contributes to expansion of breast tumor stem cells and heterotypic signals that enhance TAM and vasculogenesis, these processes may contribute to NF-κB-dependent mammary tumorigenesis.


Molecular and Cellular Biology | 2006

Cyclin D1 Determines Mitochondrial Function In Vivo

Toshiyuki Sakamaki; Mathew C. Casimiro; Xiaoming Ju; Andrew A. Quong; Sanjay Katiyar; Manran Liu; Xuanmao Jiao; Anping Li; Xueping Zhang; Yinan Lu; Chenguang Wang; Stephen W. Byers; Rob Nicholson; Todd M. Link; Melvin Shemluck; Jianguo Yang; Stanley T. Fricke; Phyllis M. Novikoff; Alexandros Papanikolaou; Andrew Arnold; Christopher Albanese; Richard G. Pestell

ABSTRACT The cyclin D1 gene encodes a regulatory subunit of the holoenzyme that phosphorylates and inactivates the pRb tumor suppressor to promote nuclear DNA synthesis. cyclin D1 is overexpressed in human breast cancers and is sufficient for the development of murine mammary tumors. Herein, cyclin D1 is shown to perform a novel function, inhibiting mitochondrial function and size. Mitochondrial activity was enhanced by genetic deletion or antisense or small interfering RNA to cyclin D1. Global gene expression profiling and functional analysis of mammary epithelial cell-targeted cyclin D1 antisense transgenics demonstrated that cyclin D1 inhibits mitochondrial activity and aerobic glycolysis in vivo. Reciprocal regulation of these genes was observed in cyclin D1-induced mammary tumors. Cyclin D1 thus integrates nuclear DNA synthesis and mitochondrial function.


Molecular and Cellular Biology | 2006

Cyclin D1 Regulates Cellular Migration through the Inhibition of Thrombospondin 1 and ROCK Signaling

Zhiping Li; Chenguang Wang; Xuanmao Jiao; Yinan Lu; Maofu Fu; Andrew A. Quong; Chip Dye; Jianguo Yang; Maozheng Dai; Xiaoming Ju; Xueping Zhang; Anping Li; Peter Burbelo; E. Richard Stanley; Richard G. Pestell

ABSTRACT Cyclin D1 is overexpressed in human tumors, correlating with cellular metastasis, and is induced by activating Rho GTPases. Herein, cyclin D1-deficient mouse embryo fibroblasts (MEFs) exhibited increased adhesion and decreased motility compared with wild-type MEFs. Retroviral transduction of cyclin D1 reversed these phenotypes. Mutational analysis of cyclin D1 demonstrated that its effects on cellular adhesion and migration were independent of the pRb and p160 coactivator binding domains. Genomewide expression arrays identified a subset of genes regulated by cyclin D1, including Rho-activated kinase II (ROCKII) and thrombospondin 1 (TSP-1). cyclin D1−/− cells showed increased Rho GTP and ROCKII activity and signaling, with increased phosphorylation of LIM kinase, cofilin (Ser3), and myosin light chain 2 (Thr18/Ser19). Cyclin D1 repressed ROCKII and TSP-1 expression, and the migratory defect of cyclin D1−/− cells was reversed by ROCK inhibition or TSP-1 immunoneutralizing antibodies. cyclin E knockin to the cyclin D1−/− MEFs rescued the DNA synthesis defect of cyclin D1−/− MEFs but did not rescue either the migration defect or the abundance of ROCKII. Cyclin D1 promotes cellular motility through inhibiting ROCK signaling and repressing the metastasis suppressor TSP-1.


Cancer Research | 2010

Cyclin D1/Cyclin-Dependent Kinase 4 Interacts with Filamin A and Affects the Migration and Invasion Potential of Breast Cancer Cells

Zhijiu Zhong; Wen-Shuz Yeow; Chunhua Zou; Richard Wassell; Chenguang Wang; Richard G. Pestell; Judy N. Quong; Andrew A. Quong

Cyclin D1 belongs to a family of proteins that regulate progression through the G1-S phase of the cell cycle by binding to cyclin-dependent kinase (cdk)-4 to phosphorylate the retinoblastoma protein and release E2F transcription factors for progression through cell cycle. Several cancers, including breast, colon, and prostate, overexpress the cyclin D1 gene. However, the correlation of cyclin D1 overexpression with E2F target gene regulation or of cdk-dependent cyclin D1 activity with tumor development has not been identified. This suggests that the role of cyclin D1 in oncogenesis may be independent of its function as a cell cycle regulator. One such function is the role of cyclin D1 in cell adhesion and motility. Filamin A (FLNa), a member of the actin-binding filamin protein family, regulates signaling events involved in cell motility and invasion. FLNa has also been associated with a variety of cancers including lung cancer, prostate cancer, melanoma, human bladder cancer, and neuroblastoma. We hypothesized that elevated cyclin D1 facilitates motility in the invasive MDA-MB-231 breast cancer cell line. We show that MDA-MB-231 motility is affected by disturbing cyclin D1 levels or cyclin D1-cdk4/6 kinase activity. Using mass spectrometry, we find that cyclin D1 and FLNa coimmunoprecipitate and that lower levels of cyclin D1 are associated with decreased phosphorylation of FLNa at Ser2152 and Ser1459. We also identify many proteins related to cytoskeletal function, biomolecular synthesis, organelle biogenesis, and calcium regulation whose levels of expression change concomitant with decreased cell motility induced by decreased cyclin D1 and cyclin D1-cdk4/6 activities.


Oncogene | 2009

Cyclin D1b protein expression in breast cancer is independent of cyclin D1a and associated with poor disease outcome.

Ewan K.A. Millar; Jeffry L. Dean; Catriona M. McNeil; Sandra A O'Toole; Susan M. Henshall; Thai H. Tran; Jieru E. Lin; Andrew A. Quong; Clay E.S. Comstock; Agnieszka K. Witkiewicz; Elizabeth A. Musgrove; Hallgeir Rui; L LeMarchand; Veronica Wendy Setiawan; Christopher A. Haiman; Karen E. Knudsen; R. Sutherland; Erik S. Knudsen

Aberrant expression of cyclin D1 protein is a common feature of breast cancer. However, the CCND1 gene encodes two gene products, cyclin D1a and cyclin D1b, which have discrete mechanisms of regulation and impact on cell behavior. A polymorphism at nucleotide 870 in the CCND1 gene, rs603965, influences the relative production of the encoded proteins and can impart increased risk for tumor development. Here, the impact of both the G/A870 polymorphism and cyclin D1b protein production on breast cancer risk, disease phenotype and patient outcome was analysed. In a large multiethnic case–control study, the G/A870 polymorphism conferred no significant risk for breast cancer overall or by stage or estrogen receptor (ER) status. However, the cyclin D1b protein was found to be upregulated in breast cancer, independent of cyclin D1a levels, and exhibited heterogeneous levels in breast cancer specimens. High cyclin D1a expression inversely correlated with the Ki67 proliferation marker and was not associated with clinical outcome. In contrast, elevated cyclin D1b expression was independently associated with adverse outcomes, including recurrence, distant metastasis and decreased survival. Interestingly, cyclin D1b was particularly associated with poor outcome in the context of ER-negative breast cancer. Thus, specific cyclin D1 isoforms are associated with discrete forms of breast cancer and high cyclin D1b protein levels hold prognostic potential.

Collaboration


Dive into the Andrew A. Quong's collaboration.

Top Co-Authors

Avatar

Richard G. Pestell

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Chenguang Wang

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Gormley

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Jie Zhou

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mathew C. Casimiro

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Sanjay Katiyar

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Xuanmao Jiao

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Adam Ertel

Thomas Jefferson University

View shared research outputs
Researchain Logo
Decentralizing Knowledge