Andrew B. Nesterovitch
Rush University Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrew B. Nesterovitch.
American Journal of Pathology | 2011
Andrew B. Nesterovitch; Zsuzsa Gyorfy; Mark D. Hoffman; Ellen C. Moore; Nada Elbuluk; Beata Tryniszewska; Tibor A. Rauch; Melinda Simon; Sewon Kang; Gary J. Fisher; Michael D. Tharp; Tibor T. Glant
We have found a B2 repeat insertion in the gene encoding protein tyrosine phosphatase nonreceptor type 6 (PTPN6) in a mouse that developed a skin disorder with clinical and histopathological features resembling those seen in human neutrophilic dermatoses. Neutrophilic dermatoses are a group of complex heterogeneous autoinflammatory diseases that all demonstrate excessive neutrophil infiltration of the skin. Therefore, we tested the cDNA and genomic DNA sequences of PTPN6 from patients with Sweets syndrome (SW) and pyoderma gangrenosum and found numerous novel splice variants in different combinations. Isoforms resulting from deletions of exons 2, 5, 11, and 15 and retention of intron 1 or 5 were the most common in a patients with a familial case of SW, who had a neonatal onset of an inflammatory disorder with skin lesions and a biopsy specimen consistent with SW. These isoforms were associated with a heterozygous E441G mutation and a heterozygous 1.7-kbp deletion in the promoter region of the PTPN6 gene. Although full-length PTPN6 was detected in all other patients with either pyoderma gangrenosum or SW, it was always associated with splice variants: a partial deletion of exon 4 with the complete deletion of exon 5, alterations that were not detected in healthy controls. The defect in transcriptional regulation of the hematopoietic PTPN6 appears to be involved in the pathogenesis of certain subsets of the heterogeneous group of neutrophilic dermatoses.
Clinical and Experimental Dermatology | 2011
Andrew B. Nesterovitch; Mark D. Hoffman; M. Simon; Pavel A. Petukhov; Michael D. Tharp; Tibor T. Glant
Background. Pyoderma gangrenosum (PG) is a rare, noninfectious form of skin ulceration, typically accompanied by neutrophilic infiltration. Several familial cases have been reported, suggesting the involvement of genetic factors in the aetiology of PG. Two mutations (A230T and E250Q) in the PSTPIP1 gene, encoding proline–serine–threonine phosphatase‐interacting protein (PSTPIP)1 have been identified in patients with PAPA (pyogenic sterile arthritis with PG and acne) syndrome, a rare autoinflammatory disorder with autosomal dominant inheritance.
Journal of Immunology | 2005
Anikó Végvári; Zoltán Szabó; Sándor Szántó; Andrew B. Nesterovitch; Tibor T. Glant; Vyacheslav A. Adarichev
Autoimmune spondylitis was induced in BALB/c mice and their MHC-matched (BALB/c × DBA/2)F1 and F2 hybrids by systemic immunization with cartilage/intervertebral disk proteoglycan (PG). As in human ankylosing spondylitis, the MHC was the major permissive genetic locus in murine PG-induced spondylitis (PGIS). Two major non-MHC chromosome loci with highly significant linkage were found on chromosomes 2 (Pgis2) and 18 (Pgis1) accounting for 40% of the entire F2 trait variance. The dominant spondylitis-susceptibility allele for Pgis2 locus is derived from the BALB/c strain, whereas the Pgis1 recessive allele was present in the disease-resistant DBA/2 strain. The Pgis1 locus significantly affected the disease-controlling Pgis2 locus, inducing as high incidence of spondylitis in F2 hybrids as was found in the spondylitis-susceptible parent BALB/c strain. Additional disease-controlling loci with suggestive linkage were mapped to the chromosomes 12, 15, and 19. Severity of spondylitis in F2 mice positively correlated with serum levels of amyloid A, IL-6, and Pg-specific Abs, and showed negative correlation with Ag-induced T cell proliferation, IFN-γ, IL-4, and TNF-α production. A major locus controlling serum IL-6 was found on chromosome 14 near osteoclast differentiation factor Tnfsf11. Locus on chromosome 11 near the Stat3 and Stat5 genes controlled serum level of the Ig IgG2a isotype. The two major genetic loci Pgis1 and Pgis2 of murine spondylitis were homologous to chromosome regions in human genome, which control ankylosing spondylitis in human patients. Thus, this animal model of experimentally induced spondylitis might facilitate the identification of spondylitis-susceptibility genes in humans.
American Journal of Pathology | 2011
Andrew B. Nesterovitch; Sándor Szántó; Andrea Gonda; Tamás Bárdos; Katalin Kis-Toth; Vyacheslav A. Adarichev; Katalin Olasz; Sheida Ghassemi-Najad; Mark D. Hoffman; Michael D. Tharp; Tibor T. Glant
We found a spontaneous autosomal mutation in a mouse leading to neutrophil infiltration with ulceration in the upper dermis of homozygous offspring. These animals had increased neutrophil numbers, associated with normal lymphocyte count, in peripheral blood and bone marrow, suggesting a myeloproliferative disorder; however, granulocyte precursor proliferation in bone marrow was actually reduced (because circulating neutrophils were less susceptible to apoptosis). Neutrophil infiltration of the skin and other organs and high serum levels of immunoglobulins and autoantibodies, cytokines, and acute-phase proteins were additional abnormalities, all of which could be reduced by high-dose corticosteroid treatment or neutrophil depletion by antibodies. Use of genome-wide screening localized the mutation within an 0.4-Mbp region on mouse chromosome 6. We identified insertion of a B2 element in exon 6 of the Ptpn6 gene (protein tyrosine phosphatase, non-receptor type 6; also known as Shp-1). This insertion involves amino acid substitutions that significantly reduced the enzyme activity in mice homozygous for the mutation. Disease onset was delayed, and the clinical phenotype was milder than the phenotypes of other Ptpn6-mutants described in motheaten (me, mev) mice; we designated this new genotype as Ptpn6(meB2/meB2) and the phenotype as meB2. This new phenotype encompasses an autoinflammatory disease showing similarities to many aspects of the so-called neutrophilic dermatoses, a heterogeneous group of skin diseases with unknown etiology in humans.
The American Journal of the Medical Sciences | 2004
Vyacheslav A. Adarichev; Andrew B. Nesterovitch; Joshua J. Jacobs; Tibor T. Glant; Sándor Szántó; Gábor Firneisz; Jian Zhang; Alison Finnegan; J.P. Oswald
&NA; Two autoimmune murine models—proteoglycan (aggrecan)‐induced arthritis (PGIA) and collagen‐induced arthritis (CIA)—were developed in parent strains, F1 and F2 hybrids of major histocompatibility complex (MHC)–matched (H‐2d) BALB/c × DBA/2 and MHC‐unmatched (H‐2d/H‐2q) BALB/c × DBA/1 intercrosses. The major goal of this comparative study was to identify disease (model)‐specific (PGIA or CIA) and shared clinical and immunologic loci in 2 types of genetic intercrosses. Qualitative (binary/susceptibility) and quantitative (severity and onset) clinical trait loci were separated and analyzed independently or together with various pathophysiologic/immunologic traits, such as antigen‐specific T‐ and B‐cell responses and cytokine production. The major quantitative trait locus (QTL) was the MHC on chromosome 17, which was especially dominant in CIA. In addition, chromosomes 3, 5, 10, and × contained shared clinical loci in both models, and a total of 8 QTLs (clinical traits together with immunologic traits) were colocalized in PGIA and CIA.
PLOS ONE | 2014
Sergei M. Danilov; Michael S. Wade; Sylva L. Schwager; Ross G. Douglas; Andrew B. Nesterovitch; Isolda A. Popova; Kyle Hogarth; Nakul Bhardwaj; David E. Schwartz; Edward D. Sturrock; Joe G. N. Garcia
Background Angiotensin I-converting enzyme (ACE) has two functional N- and C-domain active centers that display differences in the metabolism of biologically-active peptides including the hemoregulatory tetrapeptide, Ac-SDKP, hydrolysed preferentially by the N domain active center. Elevated Ac-SDKP concentrations are associated with reduced tissue fibrosis. Results We identified a patient of African descent exhibiting unusual blood ACE kinetics with reduced relative hydrolysis of two synthetic ACE substrates (ZPHL/HHL ratio) suggestive of the ACE N domain center inactivation. Inhibition of blood ACE activity by anti-catalytic mAbs and ACE inhibitors and conformational fingerprint of blood ACE suggested overall conformational changes in the ACE molecule and sequencing identified Ser333Trp substitution in the N domain of ACE. In silico analysis demonstrated S333W localized in the S1 pocket of the active site of the N domain with the bulky Trp adversely affecting binding of ACE substrates due to steric hindrance. Expression of mutant ACE (S333W) in CHO cells confirmed altered kinetic properties of mutant ACE and conformational changes in the N domain. Further, the S333W mutant displayed decreased ability (5-fold) to cleave the physiological substrate AcSDKP compared to wild-type ACE. Conclusions and Significance A novel Ser333Trp ACE mutation results in dramatic changes in ACE kinetic properties and lowered clearance of Ac-SDKP. Individuals with this mutation (likely with significantly increased levels of the hemoregulatory tetrapeptide in blood and tissues), may confer protection against fibrosis.
Scientific Reports | 2016
Sergei M. Danilov; Heinrich Lünsdorf; Henry T. Akinbi; Andrew B. Nesterovitch; Yuliya Epshtein; Eleftheria Letsiou; Olga V. Kryukova; Tobias Piegeler; Elena Z. Golukhova; David E. Schwartz; Randal O. Dull; Richard D. Minshall; O. A. Kost; Joe G. N. Garcia
Angiotensin I-converting enzyme (ACE) hydrolyzes numerous peptides and is a critical participant in blood pressure regulation and vascular remodeling. Elevated tissue ACE levels are associated with increased risk for cardiovascular and respiratory disorders. Blood ACE concentrations are determined by proteolytic cleavage of ACE from the endothelial cell surface, a process that remains incompletely understood. In this study, we identified a novel ACE gene mutation (Arg532Trp substitution in the N domain of somatic ACE) that increases blood ACE activity 7-fold and interrogated the mechanism by which this mutation significantly increases blood ACE levels. We hypothesized that this ACE mutation disrupts the binding site for blood components which may stabilize ACE conformation and diminish ACE shedding. We identified the ACE-binding protein in the blood as lysozyme and also a Low Molecular Weight (LMW) ACE effector, bilirubin, which act in concert to regulate ACE conformation and thereby influence ACE shedding. These results provide mechanistic insight into the elevated blood level of ACE observed in patients on ACE inhibitor therapy and elevated blood lysozyme and ACE levels in sarcoidosis patients.
Journal of Dermatological Science | 2016
Andrew B. Nesterovitch; Zarema Arbieva; Dániel M. Tóth; Michael D. Tharp; Tibor T. Glant
BACKGROUND Irradiated syngeneic wild-type mice developed the same neutrophilic dermatosis-like disease (NDLD) after adoptive transfer of bone marrow cells from Ptpn6(meb2/meb2) mutant mice. OBJECTIVE To analyze differentially expressed genes in the bone marrow of mice with NDLD to gain insight into the role of Ptpn6 in myelopoietic bone marrow pathology, and the mechanisms by which Ptpn6 insufficiency in the hematopoietic cells can lead to the development of skin lesions. METHODS As Ptpn6 is involved in a myriad of signaling pathways, we used a global approach with microarray technology for the first time to characterize changes in the bone marrow and skin of motheaten-type mice. RESULTS A total number of 1,511 probe sets in the bone marrow showed at least two-fold changes with FDR <0.05, of which 256 probe sets had over four-fold changes. A group of 63 genes in the bone marrow of NDLD mice had more than a 4-fold change with FDR <0.0001. From 503 genes encoding proteins with ITIM motif that binds to Ptpn6, 109 were up-regulated and 83 were down-regulated. We found that genes encoding hematopoietic receptors, neutrophil chemoattractants, Toll-like receptors (Tlr1, Tlr2 and Tlr4) and C-type lectin innate immunity receptors (Clec4e, Clec4d, Clec4n, Clec4a2 and Clec4a3) were significantly up-regulated in both NDLD bone marrow and skin. The Il1b gene was also significantly overexpressed in skin samples, confirming the importance of the IL-1/TLR pathway in the development of early skin inflammation in NDLD mice. CONCLUSION Our results suggest that innate immunity genes play a major role in development of neutrophilic dermatosis-like disease in mice.
Arthritis & Rheumatism | 2003
Vyacheslav A. Adarichev; Andrew B. Nesterovitch; Tamás Bárdos; Darci Biesczat; Raman Chandrasekaran; Csaba Vermes; Alison Finnegan; Tibor T. Glant
Arthritis & Rheumatism | 2003
Anita Hanyecz; Tamás Bárdos; Suzanne E. Berlo; Edit I. Buzás; Andrew B. Nesterovitch; Tibor T. Glant