Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew B. Nixon is active.

Publication


Featured researches published by Andrew B. Nixon.


Nature | 2002

HDAC6 is a microtubule-associated deacetylase

Charlotte Hubbert; Amaris Guardiola; Rong Shao; Yoshiharu Kawaguchi; Akihiro Ito; Andrew B. Nixon; Minoru Yoshida; Xiao-Fan Wang; Tso-Pang Yao

Reversible acetylation of α-tubulin has been implicated in regulating microtubule stability and function. The distribution of acetylated α-tubulin is tightly controlled and stereotypic. Acetylated α-tubulin is most abundant in stable microtubules but is absent from dynamic cellular structures such as neuronal growth cones and the leading edges of fibroblasts. However, the enzymes responsible for regulating tubulin acetylation and deacetylation are not known. Here we report that a member of the histone deacetylase family, HDAC6, functions as a tubulin deacetylase. HDAC6 is localized exclusively in the cytoplasm, where it associates with microtubules and localizes with the microtubule motor complex containing p150glued (ref. 3). In vivo, the overexpression of HDAC6 leads to a global deacetylation of α-tubulin, whereas a decrease in HDAC6 increases α-tubulin acetylation. In vitro, purified HDAC6 potently deacetylates α-tubulin in assembled microtubules. Furthermore, overexpression of HDAC6 promotes chemotactic cell movement, supporting the idea that HDAC6-mediated deacetylation regulates microtubule-dependent cell motility. Our results show that HDAC6 is the tubulin deacetylase, and provide evidence that reversible acetylation regulates important biological processes beyond histone metabolism and gene transcription.


Hypertension | 2009

Vascular Endothelial Growth Factor Receptor 2 Controls Blood Pressure by Regulating Nitric Oxide Synthase Expression

Carie S. Facemire; Andrew B. Nixon; Robert Griffiths; Herbert Hurwitz; Thomas M. Coffman

Drugs and antibodies that interrupt vascular endothelial growth factor (VEGF) signaling pathways improve outcomes in patients with a variety of cancers by inhibiting tumor angiogenesis. A major adverse effect of these treatments is hypertension, suggesting a critical role for VEGF in blood pressure (BP) regulation. However, the physiological mechanisms underlying the control of BP by VEGF are unclear. To address this question, we administered a specific antibody against the major VEGF receptor, VEGFR2, to normal mice and assessed the consequences on BP. Compared with vehicle-treated controls, administration of the anti-VEGFR2 antibody caused a rapid and sustained increase in BP of ≈10 mm Hg. This increase in BP was associated with a significant reduction in renin mRNA expression in the kidney (P=0.019) and in urinary excretion of aldosterone (P<0.05). Treatment with the anti-VEGFR2 antibody also caused a marked reduction in the expression of endothelial and neuronal NO synthases in the kidney. To examine the role of NO in the hypertension caused by blocking VEGFR2, mice were treated with N&ohgr;-nitro-l-arginine methyl ester (l-NAME) (20 mg/kg per day), an inhibitor of NO production. l-NAME administration abolished the difference in BP between the vehicle- and anti-VEGFR2–treated groups. Our data suggest that VEGF, acting via VEGFR2, plays a critical role in BP control by promoting NO synthase expression and NO activity. Interfering with this pathway is likely to be one mechanism underlying hypertension caused by antiangiogenic agents targeting VEGF.


Journal of Biological Chemistry | 1995

5-LIPOXYGENASE PRODUCTS MODULATE THE ACTIVITY OF THE 85-KDA PHOSPHOLIPASE A2 IN HUMAN NEUTROPHILS

Jonny Wijkander; Joseph T. O'Flaherty; Andrew B. Nixon; Robert L. Wykle

Addition of submicromolar concentrations of arachidonic acid (AA) to human neutrophils induced a 2-fold increase in the activity of a cytosolic phospholipase A2 (PLA2) when measured using sonicated vesicles of 1-stearoyl-2-[14C]arachidonoylphosphatidylcholine as substrate. A similar increase in cytosolic PLA2 activity was induced by stimulation of neutrophils with leukotriene B4 (LTB4), 5-oxoeicosatetraenoic acid, or 5-hydroxyeicosatetraenoic acid (5-HETE). LTB4 was the most potent of the agonists, showing maximal effect at 1 nM. Inhibition of 5-lipoxygenase with either eicosatetraynoic acid or zileuton prevented the AA-induced increase in PLA2 activity but had no effect on the response induced by LTB4. Furthermore, pretreatment of neutrophils with a LTB4-receptor antagonist, LY 255283, blocked the AA- and LTB4-induced activation of PLA2 but did not influence the action of 5-HETE. Treatment of neutrophils with pancreatic PLA2 also induced an increase in the activity of the cytosolic PLA2; this response was inhibited by both eicosatetraynoic acid or LY 255283. The increases in PLA2 activity in response to stimulation correlated with a shift in electrophoretic mobility of the 85-kDa PLA2, as determined by Western blot analysis, suggesting that phosphorylation of the 85-kDa PLA2 likely underlies its increase in catalytic activity. Although stimulation of neutrophils with individual lipoxygenase metabolites did not induce significant mobilization of endogenous AA, they greatly enhanced the N-formylmethionyl-leucyl-phenylalanine-induced mobilization of AA as determined by mass spectrometry analysis. Our findings support a positive-feedback model in which stimulus-induced release of AA or exocytosis of secretory PLA2 modulate the activity of the cytosolic 85-kDa PLA2 by initiating the formation of LTB4. The nascent LTB4 is then released to act on the LTB4 receptor and thereby promote further activation of the 85-kDa PLA2. Since 5-HETE and LTB4 are known to prime the synthesis of platelet-activating factor, the findings suggest that 85-kDa PLA2 plays a role in platelet-activating factor synthesis.


Molecular Cancer Therapeutics | 2010

Effect of Pazopanib on Tumor Microenvironment and Liposome Delivery

Tina D. Tailor; Gabi Hanna; Pavel S. Yarmolenko; Matthew R. Dreher; Allison S. Betof; Andrew B. Nixon; Ivan Spasojevic; Mark W. Dewhirst

Pathologic angiogenesis creates an abnormal microenvironment in solid tumors, characterized by elevated interstitial fluid pressure (IFP) and hypoxia. Emerging theories suggest that judicious downregulation of proangiogenic signaling pathways may transiently “normalize” the vascular bed, making it more suitable for drug delivery and radiotherapy. In this work, we investigate the role of pazopanib, a small-molecule inhibitor of vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) receptors, on tumor IFP, angiogenesis, hypoxia, and liposomal drug delivery. Nude mice bearing A549 human non–small cell lung cancer xenografts were treated with 100 mg/kg pazopanib (n = 20) or vehicle (n = 20) through oral gavage for 8 days, followed by a one-time intravenous dose of 10 mg/kg Doxil (liposomal doxorubicin). Pazopanib treatment resulted in significant reduction of tumor IFP and decreased vessel density, assessed by CD31 staining. Despite these trends toward normalization, high-performance liquid chromatography revealed no differences in doxorubicin concentration between pazopanib-treated and control tumors, with Doxil penetration from microvessels being significantly reduced in the pazopanib group. Additionally, tumor hypoxia, evaluated by CA-IX immunostaining and confirmed in a second study by EF5 expression (n = 4, 100 mg/kg pazopanib; n = 4, vehicle), was increased in pazopanib-treated tumors. Our results suggest that the classic definition of tumor “normalization” may undermine the crucial role of vessel permeability and oncotic pressure gradients in liposomal drug delivery, and that functional measures of normalization, such as reduced IFP and hypoxia, may not occur in parallel temporal windows. Mol Cancer Ther; 9(6); 1798–808. ©2010 AACR.


Clinical Cancer Research | 2013

Prognostic and Predictive Blood-Based Biomarkers in Patients with Advanced Pancreatic Cancer: Results from CALGB80303 (Alliance)

Andrew B. Nixon; Herbert Pang; Mark D. Starr; Paula N. Friedman; Monica M. Bertagnolli; Hedy L. Kindler; Richard M. Goldberg; Alan P. Venook; Herbert Hurwitz

Purpose: CALGB80303 was a phase III trial of 602 patients with locally advanced or metastatic pancreatic cancer comparing gemcitabine/bevacizumab versus gemcitabine/placebo. The study found no benefit in any outcome from the addition of bevacizumab to gemcitabine. Blood samples were collected and multiple angiogenic factors were evaluated and then correlated with clinical outcome in general (prognostic markers) and with benefit specifically from bevacizumab treatment (predictive markers). Experimental Design: Plasma samples were analyzed via a novel multiplex ELISA platform for 31 factors related to tumor growth, angiogenesis, and inflammation. Baseline values for these factors were correlated with overall survival (OS) using univariate Cox proportional hazard regression models and multivariable Cox regression models with leave-one-out cross validation. Predictive markers were identified using a treatment by marker interaction term in the Cox model. Results: Baseline plasma was available from 328 patients. Univariate prognostic markers for OS were identified including: Ang2, CRP, ICAM-1, IGFBP-1, TSP-2 (all P < 0.001). These prognostic factors were found to be highly significant, even after adjustment for known clinical factors. Additional modeling approaches yielded prognostic signatures from multivariable Cox regression. The gemcitabine/bevacizumab signature consisted of IGFBP-1, interleukin-6, PDGF-AA, PDGF-BB, TSP-2; whereas the gemcitabine/placebo signature consisted of CRP, IGFBP-1, PAI-1, PDGF-AA, P-selectin (both P < 0.0001). Finally, three potential predictive markers of bevacizumab efficacy were identified: VEGF-D (P < 0.01), SDF1 (P < 0.05), and Ang2 (P < 0.05). Conclusion: This study identified strong prognostic markers for pancreatic cancer patients. Predictive marker analysis indicated that plasma levels of VEGF-D, Ang2, and SDF1 significantly predicted for benefit or lack of benefit from bevacizumab in this population. Clin Cancer Res; 19(24); 6957–66. ©2013 AACR.


Journal of Clinical Investigation | 2013

Type III TGF-β receptor downregulation generates an immunotolerant tumor microenvironment

Brent A. Hanks; Alisha Holtzhausen; Kathy Evans; Rebekah Jamieson; Petra Gimpel; Olivia M. Campbell; Melissa Hector-Greene; Lihong Sun; Alok K. Tewari; Amanda George; Mark D. Starr; Andrew B. Nixon; Christi Augustine; Georgia M. Beasley; Douglas S. Tyler; Takayu Osada; Michael A. Morse; Leona E. Ling; H. Kim Lyerly; Gerard C. Blobe

Cancers subvert the host immune system to facilitate disease progression. These evolved immunosuppressive mechanisms are also implicated in circumventing immunotherapeutic strategies. Emerging data indicate that local tumor-associated DC populations exhibit tolerogenic features by promoting Treg development; however, the mechanisms by which tumors manipulate DC and Treg function in the tumor microenvironment remain unclear. Type III TGF-β receptor (TGFBR3) and its shed extracellular domain (sTGFBR3) regulate TGF-β signaling and maintain epithelial homeostasis, with loss of TGFBR3 expression promoting progression early in breast cancer development. Using murine models of breast cancer and melanoma, we elucidated a tumor immunoevasion mechanism whereby loss of tumor-expressed TGFBR3/sTGFBR3 enhanced TGF-β signaling within locoregional DC populations and upregulated both the immunoregulatory enzyme indoleamine 2,3-dioxygenase (IDO) in plasmacytoid DCs and the CCL22 chemokine in myeloid DCs. Alterations in these DC populations mediated Treg infiltration and the suppression of antitumor immunity. Our findings provide mechanistic support for using TGF-β inhibitors to enhance the efficacy of tumor immunotherapy, indicate that sTGFBR3 levels could serve as a predictive immunotherapy biomarker, and expand the mechanisms by which TGFBR3 suppresses cancer progression to include effects on the tumor immune microenvironment.


Cancer Medicine | 2013

Correlation of angiogenic biomarker signatures with clinical outcomes in metastatic colorectal cancer patients receiving capecitabine, oxaliplatin, and bevacizumab

Yingmiao Liu; Mark D. Starr; Anuradha Bulusu; Herbert Pang; Nan Soon Wong; Wanda Honeycutt; Anthony Amara; Herbert Hurwitz; Andrew B. Nixon

A novel combination of capecitabine, oxaliplatin, and bevacizumab was evaluated in colorectal cancer patients enrolled in a phase II clinical trial. In this retrospective analysis, plasma samples from patients receiving capecitabine, oxaliplatin, and bevacizumab were analyzed to investigate biomarkers of clinical benefit. Forty‐one protein biomarkers were tested in 38 patients at baseline and after two cycles of drug administration. Correlations among analytes were evaluated by Spearman analysis. Analyte levels at baseline and changes on‐treatment were correlated with progression‐free survival (PFS) and overall survival (OS) by univariate analysis. Multivariate analyses were determined using the Cox proportional hazard model. Time to event analyses were evaluated by Kaplan–Meier analysis and compared by log‐rank test. Baseline levels of vWF and Ang‐2 significantly correlated with PFS, while levels of VCAM‐1, vWF, TSP‐2, IL‐8, MMP‐2, and Ang‐2 correlated with OS (P < 0.05). The fold change of IGF‐1 levels from baseline to the end of cycle 2 was correlated with PFS, while fold changes of Ang‐2, TSP‐2, and TGF‐β2 correlated with OS. A baseline signature of Ang‐2, IGFBP‐3, IL‐6, and VCAM‐1 identified a low‐risk and high‐risk group of patients (OS: 33.9 months vs. 18.1 months, respectively, P = 0.016). For treatment‐related changes, a signature consisting of Ang‐2, E‐Cadherin, IL‐6, MCP‐1, OPN, and TGF‐β1 was able to stratify patients into high‐ and low‐risk groups (PFS: 7.7 months vs. 15.5 months, P = 0.004). Multiplex analysis of patient plasma in this trial identified several baseline‐ and treatment‐related biomarkers associated with clinical outcome. These findings merit further exploration in larger, controlled clinical trials.


Biochimica et Biophysica Acta | 2002

Regulation of platelet-activating factor synthesis in human neutrophils by MAP kinases.

Paul R. S. Baker; John Owen; Andrew B. Nixon; Leslie Thomas; Rhonda E. Wooten; Larry W. Daniel; Joseph T. O'Flaherty; Robert L. Wykle

Human neutrophils (PMN) are potentially a major source of platelet-activating factor (PAF) produced during inflammatory responses. The stimulated synthesis of PAF in PMN is carried out by a phospholipid remodeling pathway involving three enzymes: acetyl-CoA:lyso-PAF acetyltransferase (acetyltransferase), type IV phospholipase A(2) (cPLA(2)) and CoA-independent transacylase (CoA-IT). However, the coordinated actions and the regulatory mechanisms of these enzymes in PAF synthesis are poorly defined. A23187 has been widely used to activate the remodeling pathway, but it has not been shown how closely its actions mimic those of physiological stimuli. Here we address this important problem and compare responses of the three remodeling enzymes and PAF synthesis by intact cells. In both A23187- and N-formyl-methionyl-leucyl-phenylalanine (fMLP)-stimulated PMN, acetyltransferase activation is blocked by SB 203580, a p38 MAP kinase inhibitor, but not by PD 98059, which blocks activation of the ERKs. In contrast, either agent attenuated cPLA(2) activation. Correlating with these results, SB 203580 decreased stimulated PAF formation by 60%, whereas PD 98059 had little effect. However, the combination of both inhibitors decreased PAF formation to control levels. Although a role for CoA-IT in PAF synthesis is recognized, we did not detect activation of the enzyme in stimulated PMN. CoA-IT thus appears to exhibit full activity in resting as well as stimulated cells. We conclude that the calcium ionophore A23187 and the receptor agonist fMLP both act through common pathways to stimulate PAF synthesis, with p38 MAP kinase regulating acetyltransferase and supplementing ERK activation of cPLA(2).


Journal of Biological Chemistry | 1999

Acetyl-CoA:1-O-Alkyl-2-lyso-sn-glycero-3-phosphocholine Acetyltransferase Is Directly Activated by p38 Kinase

Andrew B. Nixon; Joseph T. O'Flaherty; Salyer Jk; Robert L. Wykle

Acetyl-CoA:1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine acetyltransferase, along with phospholipase A2, is a key regulator of platelet-activating factor biosynthesis via the remodeling pathway. We have now obtained evidence in human neutrophils indicating that this enzyme is regulated by a specific member of the mitogen-activated protein kinases, namely the p38 kinase. We earlier demonstrated that tumor necrosis factor-α (TNF-α) as well asN-formyl-methionyl-leucyl-phenylalanine treatment leads to increased phosphorylation and activation of p38 kinase in human neutrophils. Strikingly, in the present study these stimuli increased the catalytic activity of acetyltransferase up to 3-fold, whereas 4-phorbol 12-myristate 13-acetate, which activates the extracellular-regulated kinases (ERKs) but not p38 kinase, had no effect. Furthermore, a selective inhibitor of p38 kinase, SB 203580, was able to abolish the TNF-α- andN-formyl-methionyl-leucyl-phenylalanine-induced activation of acetyltransferase. The same effect was not observed in the presence of an inhibitor that blocked ERK activation (PD 98059). Complementing the findings in intact cells, we have shown that recombinant, activated p38 kinase added to microsomes in the presence of Mg2+ and ATP increased acetyltransferase activity to the same degree as in microsomes obtained from TNF-α-stimulated cells. No activation of acetyltransferase occurred upon treatment of microsomes with either recombinant, activated ERK-1 or ERK-2. Finally, the increases in acetyltransferase activity induced by TNF-α could be ablated by treating the microsomes with alkaline phosphatase. Thus acetyltransferase appears to be a downstream target for p38 kinase but not ERKs. These data from whole cells as well as cell-free systems fit a model wherein stimulus-induced acetyltransferase activation is mediated by a phosphorylation event catalyzed directly by p38 kinase.


Oncologist | 2013

A Phase II Study of Capecitabine, Oxaliplatin, and Bevacizumab in the Treatment of Metastatic Esophagogastric Adenocarcinomas

Hope E. Uronis; Johanna C. Bendell; Ivy Altomare; Gerard C. Blobe; S. David Hsu; Michael A. Morse; Herbert Pang; S. Yousuf Zafar; Paul Conkling; Justin Favaro; Christy C. Arrowood; Stephanie M. Cushman; Kellen L. Meadows; John C. Brady; Andrew B. Nixon; Herbert Hurwitz

BACKGROUND Esophageal and gastric cancers often present at an advanced stage. Systemic chemotherapy is the mainstay of treatment, but survival with current regimens remains poor. We evaluated the safety, tolerability, and efficacy of the combination capecitabine, oxaliplatin, and bevacizumab in the treatment of metastatic esophagogastric adenocarcinomas. METHODS Thirty-seven patients with metastatic or unresectable gastric/gastroesophageal junction tumors were enrolled and treated with capecitabine 850 mg/m(2) BID on days 1-14, and oxaliplatin 130 mg/m(2) with bevacizumab 15 mg/kg on day 1 of a 21-day cycle. The primary endpoint was progression-free survival (PFS). Secondary endpoints included response rate (RR) and overall survival (OS). Neuropilin-1 (NRP1) and -2 (NRP2) mRNA expression was evaluated in archived tumor. RESULTS Thirty-five patients were evaluable for efficacy. Median PFS was 7.2 months; median OS was 10.8 months. RR was estimated at 51.4%. The regimen was tolerable with expected drug class-related toxicities. NRP2 mRNA levels significantly correlated with PFS (p = 0.042) and showed a trend toward significance with OS (p = 0.051). Nonsignificant trends for NRP1 were noted for higher expression levels and worse outcome. CONCLUSIONS Bevacizumab can be given safely with chemotherapy in patients with metastatic esophagogastric adenocarcinomas. The combination of capecitabine, oxaliplatin, plus bevacizumab has activity comparable to other bevacizumab-containing regimens in metastatic gastroesophageal cancer.

Collaboration


Dive into the Andrew B. Nixon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan P. Venook

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge