Andrew B. Reeves
United States Geological Survey
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrew B. Reeves.
Molecular Ecology | 2011
John M. Pearce; Andrew B. Reeves; Andrew M. Ramey; Jerry W. Hupp; Hon S. Ip; Mark R. Bertram; Michael J. Petrula; Bradley D. Scotton; Kimberly A. Trust; Brandt W. Meixell; Jonathan A. Runstadler
The movement and transmission of avian influenza viral strains via wild migratory birds may vary by host species as a result of migratory tendency and sympatry with other infected individuals. To examine the roles of host migratory tendency and species sympatry on the movement of Eurasian low‐pathogenic avian influenza (LPAI) genes into North America, we characterized migratory patterns and LPAI viral genomic variation in mallards (Anas platyrhynchos) of Alaska in comparison with LPAI diversity of northern pintails (Anas acuta). A 50‐year band‐recovery data set suggests that unlike northern pintails, mallards rarely make trans‐hemispheric migrations between Alaska and Eurasia. Concordantly, fewer (14.5%) of 62 LPAI isolates from mallards contained Eurasian gene segments compared to those from 97 northern pintails (35%), a species with greater inter‐continental migratory tendency. Aerial survey and banding data suggest that mallards and northern pintails are largely sympatric throughout Alaska during the breeding season, promoting opportunities for interspecific transmission. Comparisons of full‐genome isolates confirmed near‐complete genetic homology (>99.5%) of seven viruses between mallards and northern pintails. This study found viral segments of Eurasian lineage at a higher frequency in mallards than previous studies, suggesting transmission from other avian species migrating inter‐hemispherically or the common occurrence of endemic Alaskan viruses containing segments of Eurasian origin. We conclude that mallards are unlikely to transfer Asian‐origin viruses directly to North America via Alaska but that they are likely infected with Asian‐origin viruses via interspecific transfer from species with regular migrations to the Eastern Hemisphere.
Virology | 2015
Andrew M. Ramey; Andrew B. Reeves; Sarah A. Sonsthagen; Joshua L. TeSlaa; Sean W. Nashold; Tyrone F. Donnelly; Bruce Casler; Jeffrey S. Hall
Samples were collected from wild birds in western Alaska to assess dispersal of influenza A viruses between East Asia and North America. Two isolates shared nearly identical nucleotide identity at eight genomic segments with H9N2 viruses isolated from China and South Korea providing evidence for intercontinental dispersal by migratory birds.
Archives of Virology | 2013
Andrew M. Ramey; Andrew B. Reeves; Haruko Ogawa; Hon S. Ip; Kunitoshi Imai; Vuong N. Bui; Emi Yamaguchi; Nikita Y. Silko; Claudio L. Afonso
Avian paramyxovirus serotype 1 (APMV-1), or Newcastle disease virus, is the causative agent of Newcastle disease, one of the most economically important diseases for poultry production worldwide and a cause of periodic epizootics in wild birds in North America. In this study, we examined the genetic diversity of APMV-1 isolated from migratory birds sampled in Alaska, Japan, and Russia and assessed the evidence for intercontinental virus spread using phylogenetic methods. Additionally, we predicted viral virulence using deduced amino acid residues for the fusion protein cleavage site and estimated mutation rates for the fusion gene of class I and class II migratory bird isolates. All 73 isolates sequenced as part of this study were most closely related to virus genotypes previously reported for wild birds; however, five class II genotype I isolates formed a monophyletic clade exhibiting previously unreported genetic diversity, which met criteria for the designation of a new sub-genotype. Phylogenetic analysis of wild-bird isolates provided evidence for intercontinental virus spread, specifically viral lineages of APMV-1 class II genotype I sub-genotypes Ib and Ic. This result supports migratory bird movement as a possible mechanism for the redistribution of APMV-1. None of the predicted deduced amino acid motifs for the fusion protein cleavage site of APMV-1 strains isolated from migratory birds in Alaska, Japan, and Russia were consistent with those of previously identified virulent viruses. These data therefore provide no support for these strains contributing to the emergence of avian pathogens. The estimated mutation rates for fusion genes of class I and class II wild-bird isolates were faster than those reported previously for non-virulent APMV-1 strains. Collectively, these findings provide new insight into the diversity, spread, and evolution of APMV-1 in wild birds.
Infection, Genetics and Evolution | 2016
Andrew M. Ramey; Andrew B. Reeves; Joshua L. TeSlaa; Sean W. Nashold; Tyrone F. Donnelly; Justin Bahl; Jeffrey S. Hall
Highly pathogenic clade 2.3.4.4 H5N8, H5N2, and H5N1 influenza A viruses were first detected in wild, captive, and domestic birds in North America in November-December 2014. In this study, we used wild waterbird samples collected in Alaska prior to the initial detection of clade 2.3.4.4 H5 influenza A viruses in North America to assess the evidence for: (1) dispersal of highly pathogenic influenza A viruses from East Asia to North America by migratory birds via Alaska and (2) ancestral origins of clade 2.3.4.4 H5 reassortant viruses in Beringia. Although we did not detect highly pathogenic influenza A viruses in our sample collection from western Alaska, we did identify viruses that contained gene segments sharing recent common ancestry with intercontinental reassortant H5N2 and H5N1 viruses. Results of phylogenetic analyses and estimates for times of most recent common ancestry support migratory birds sampled in Beringia as maintaining viral diversity closely related to novel highly pathogenic influenza A virus genotypes detected in North America. Although our results do not elucidate the route by which highly pathogenic influenza A viruses were introduced into North America, genetic evidence is consistent with the hypothesized trans-Beringian route of introduction via migratory birds.
PLOS ONE | 2015
Andrew B. Reeves; Matthew M. Smith; Brandt W. Meixell; Joseph P. Fleskes; Andrew M. Ramey
Birds of the order Anseriformes, commonly referred to as waterfowl, are frequently infected by Haemosporidia of the genera Haemoproteus, Plasmodium, and Leucocytozoon via dipteran vectors. We analyzed nucleotide sequences of the Cytochrome b (Cytb) gene from parasites of these genera detected in six species of ducks from Alaska and California, USA to characterize the genetic diversity of Haemosporidia infecting waterfowl at two ends of the Pacific Americas Flyway. In addition, parasite Cytb sequences were compared to those available on a public database to investigate specificity of genetic lineages to hosts of the order Anseriformes. Haplotype and nucleotide diversity of Haemoproteus Cytb sequences was lower than was detected for Plasmodium and Leucocytozoon parasites. Although waterfowl are presumed to be infected by only a single species of Leucocytozoon, L. simondi, diversity indices were highest for haplotypes from this genus and sequences formed five distinct clades separated by genetic distances of 4.9%–7.6%, suggesting potential cryptic speciation. All Haemoproteus and Leucocytozoon haplotypes derived from waterfowl samples formed monophyletic clades in phylogenetic analyses and were unique to the order Anseriformes with few exceptions. In contrast, waterfowl-origin Plasmodium haplotypes were identical or closely related to lineages found in other avian orders. Our results suggest a more generalist strategy for Plasmodium parasites infecting North American waterfowl as compared to those of the genera Haemoproteus and Leucocytozoon.
Journal of Wildlife Diseases | 2013
Andrew B. Reeves; John M. Pearce; Andrew M. Ramey; Craig R. Ely; Joel A. Schmutz; Paul L. Flint; Dirk V. Derksen; Hon S. Ip; Kimberly A. Trust
The Yukon-Kuskokwim Delta (Y-K Delta) in western Alaska is an immense and important breeding ground for waterfowl. Migratory birds from the Pacific Americas, Central Pacific, and East Asian-Australasian flyways converge in this region, providing opportunities for intermixing of North American- and Eurasian-origin hosts and infectious agents, such as avian influenza virus (AIV). We characterized the genomes of 90 low pathogenic (LP) AIV isolates from 11 species of waterfowl sampled on the Y-K Delta between 2006 and 2009 as part of an interagency surveillance program for the detection of the H5N1 highly pathogenic (HP) strain of AIV. We found evidence for subtype and genetic differences between viruses from swans and geese, dabbling ducks, and sea ducks. At least one gene segment in 39% of all isolates was Eurasian in origin. Target species (those ranked as having a relatively high potential to introduce HP H5N1 AIV to North America) were no more likely than nontarget species to carry viruses with genes of Eurasian origin. These findings provide evidence that the frequency at which viral gene segments of Eurasian origin are detected does not result from a strong species effect, but rather we suspect it is linked to the geographic location of the Y-K Delta in western Alaska where flyways from different continents overlap. This study provides support for retaining the Y-K Delta as a high priority region for the surveillance of Asian avian pathogens such as HP H5N1 AIV.
Infection, Genetics and Evolution | 2011
Andrew B. Reeves; John M. Pearce; Andrew M. Ramey; Brandt W. Meixell; Jonathan A. Runstadler
The reassortment and geographic distribution of low pathogenic avian influenza (LPAI) virus genes are well documented, but little is known about the persistence of intact LPAI genomes among species and locations. To examine persistence of entire LPAI genome constellations in Alaska, we calculated the genetic identities among 161 full-genome LPAI viruses isolated across 4 years from five species of duck: northern pintail (Anas acuta), mallard (Anas platyrhynchos), American green-winged teal (Anas crecca), northern shoveler (Anas clypeata) and American wigeon (Anas americana). Based on pairwise genetic distance, highly similar LPAI genomes (>99% identity) were observed within and between species and across a range of geographic distances (up to and >1000 km), but most often between isolates collected 0-10 km apart. Highly similar viruses were detected between years, suggesting inter-annual persistence, but these were rare in our data set with the majority occurring within 0-9 days of sampling. These results identify LPAI transmission pathways in the context of species, space and time, an initial perspective into the extent of regional virus distribution and persistence, and insight into why no completely Eurasian genomes have ever been detected in Alaska. Such information will be useful in forecasting the movement of foreign-origin avian influenza strains should they be introduced to North America.
Virology Journal | 2016
Andrew M. Ramey; John M. Pearce; Andrew B. Reeves; Rebecca L. Poulson; Jennifer Dobson; Brian Lefferts; Kyle A. Spragens; David E. Stallknecht
BackgroundEurasian-origin and intercontinental reassortant highly pathogenic (HP) influenza A viruses (IAVs) were first detected in North America in wild, captive, and domestic birds during November–December 2014. Detections of HP viruses in wild birds in the contiguous United States and southern Canadian provinces continued into winter and spring of 2015 raising concerns that migratory birds could potentially disperse viruses to more northerly breeding areas where they could be maintained to eventually seed future poultry outbreaks.ResultsWe sampled 1,129 wild birds on the Yukon-Kuskokwim Delta, Alaska, one of the largest breeding areas for waterfowl in North America, during spring and summer of 2015 to test for Eurasian lineage and intercontinental reassortant HP H5 IAVs and potential progeny viruses. We did not detect HP IAVs in our sample collection from western Alaska; however, we isolated five low pathogenic (LP) viruses. Four isolates were of the H6N1 (n = 2), H6N2, and H9N2 combined subtypes whereas the fifth isolate was a mixed infection that included H3 and N7 gene segments. Genetic characterization of these five LP IAVs isolated from cackling (Branta hutchinsii; n = 2) and greater white-fronted geese (Anser albifrons; n = 3), revealed three viral gene segments sharing high nucleotide identity with HP H5 viruses recently detected in North America. Additionally, one of the five isolates was comprised of multiple Eurasian lineage gene segments.ConclusionsOur results did not provide direct evidence for circulation of HP IAVs in the Yukon-Kuskokwim Delta region of Alaska during spring and summer of 2015. Prevalence and genetic characteristics of LP IAVs during the sampling period are concordant with previous findings of relatively low viral prevalence in geese during spring, non-detection of IAVs in geese during summer, and evidence for intercontinental exchange of viruses in western Alaska.
Infection, Genetics and Evolution | 2016
Andrew B. Reeves; Rebecca L. Poulson; Denys Muzyka; Haruko Ogawa; Kunitoshi Imai; Vuong N. Bui; Jeffrey S. Hall; Mary J. Pantin-Jackwood; David E. Stallknecht; Andrew M. Ramey
Avian paramyxovirus serotype 4 (APMV-4) is a single stranded RNA virus that has most often been isolated from waterfowl. Limited information has been reported regarding the prevalence, pathogenicity, and genetic diversity of AMPV-4. To assess the intercontinental dispersal of this viral agent, we sequenced the fusion gene of 58 APMV-4 isolates collected in the United States, Japan and the Ukraine and compared them to all available sequences on GenBank. With only a single exception the phylogenetic clades of APMV-4 sequences were monophyletic with respect to their continents of origin (North America, Asia and Europe). Thus, we detected limited evidence for recent intercontinental dispersal of APMV-4 in this study.
Journal of Fish and Wildlife Management | 2017
Joseph P. Fleskes; Andrew M. Ramey; Andrew B. Reeves; Julie L. Yee
Abstract Waterfowl managers lack information regarding factors that may be reducing the positive response of waterfowl body condition to habitat improvements. Protozoan blood parasites (i.e., hematozoa) are commonly found in birds and have been related to reduced body mass, wing length, and body condition. We studied relationships between 12 measures of hematozoa infection and body mass, wing length, and body mass divided by wing length (i.e., body condition index) of the five most common duck species (northern pintail [Anas acuta], mallard [A. platyrhynchos], green-winged teal [A. crecca], American wigeon [A. americana], northern shoveler [A. clypeata]) wintering in the Central Valley of California during October 2006–January 2007. After accounting for variation due to species, age–sex cohort, Central Valley region, and month, wing length, body mass, and body condition index were found to be negatively related to infection by Leucocytozoon and by “any hematozoa” but not related to infection by only Plasm...