Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew Bahn is active.

Publication


Featured researches published by Andrew Bahn.


Journal of The American Society of Nephrology | 2007

Human Renal Organic Anion Transporter 4 Operates as an Asymmetric Urate Transporter

Yohannes Hagos; Daniel Stein; Bernhard Ugele; Gerhard Burckhardt; Andrew Bahn

Human organic anion transporter 4 (hOAT4) is located at the apical membrane of proximal tubule cells and involved in renal secretion and reabsorption of endogenous substances as well as many drugs and xenobiotics. This study reevaluated the physiologic role, transport mode, and driving forces of hOAT4. 6-Carboxyfluorescein (6-CF) uptake into HEK293 cells that stably expressed hOAT4 was saturable, resulting in a K(m) of 108 muM. 6-CF as well as [(3)H]estrone sulfate ([(3)H]ES) accumulation by HEK293-hOAT4 cells were abolished by ES, dehydroepiandrosterone sulfate, sulfinpyrazone, benzbromarone, and probenecid, whereas several OA, including p-aminohippurate (PAH), lactate, pyrazinoate, nicotinate, glutarate, and the diuretic hydrochlorothiazide (HCTZ) exhibited a slight or a NS inhibitory effect. PAH and glutarate are not taken up by HEK293-hOAT4 cells, but they trans-stimulated 6-CF and [(3)H]ES uptake, indicating an asymmetric interaction of hOAT4 with these substrates. In chloride-free medium, HEK293-hOAT4-mediated [(3)H]PAH efflux was almost abolished, whereas addition of ES restored it comparable to Ringer solution, consistent with a physiologic ES/PAH or PAH/Cl(-) exchange mode of hOAT4. Moreover, an acidification of the uptake medium increased 6-CF as well as [(3)H]ES uptake, which was reduced by nigericin, suggesting that hOAT4 also can operate as an OA/OH(-) exchanger. hOAT4 facilitates substantial uptake of [(14)C]urate, which was elevated 2.6-fold by intracellular HCTZ. Thus, hOAT4 is the long-postulated, low-affinity apical urate anion exchanger that facilitates HCTZ-associated hyperuricemia.


Journal of Biological Chemistry | 2008

Identification of a New Urate and High Affinity Nicotinate Transporter, hOAT10 (SLC22A13) *

Andrew Bahn; Yohannes Hagos; Stefan Reuter; Daniela Balen; Hrvoje Brzica; Wolfgang Krick; Birgitta C. Burckhardt; Ivan Sabolić; Gerhard Burckhardt

The orphan transporter hORCTL3 (human organic cation transporter like 3; SLC22A13) is highly expressed in kidneys and to a weaker extent in brain, heart, and intestine. hORCTL3-expressing Xenopus laevis oocytes showed uptake of [3H]nicotinate, [3H]p-aminohippurate, and [14C]urate. Hence, hORCTL3 is an organic anion transporter, and we renamed it hOAT10. [3H]Nicotinate transport by hOAT10 into X. laevis oocytes and into Caco-2 cells was saturable with Michaelis constants (Km) of 22 and 44 μm, respectively, suggesting that hOAT10 may be the molecular equivalent of the postulated high affinity nicotinate transporter in kidneys and intestine. The pH dependence of hOAT10 suggests p-aminohippurate–/OH–, urate–/OH–, and nicotinate–/OH– exchange as possible transport modes. Urate inhibited [3H]nicotinate transport by hOAT10 with an IC50 value of 759 μm, assuming that hOAT10 represents a low affinity urate transporter. hOAT10-mediated [14C]urate uptake was elevated by an exchange with l -lactate, pyrazinoate, and nicotinate. Surprisingly, we have detected urate–/glutathione exchange by hOAT10, consistent with an involvement of hOAT10 in the renal glutathione cycle. Uricosurics, diuretics, and cyclosporine A showed substantial interactions with hOAT10, of which cyclosporine A enhanced [14C]urate uptake, providing the first molecular evidence for cyclosporine A-induced hyperuricemia.


Cellular Physiology and Biochemistry | 2003

Human Organic Anion Transporter 3 (hOAT3) can Operate as an Exchanger and Mediate Secretory Urate Flux

Adiya Bakhiya; Andrew Bahn; Gerhard Burckhardt; Natascha A. Wolff

Background/Aims: Renal secretion of organic anions is critically dependent on their basolateral uptake against the electrochemical gradient. Due to their localization, two transporters are likely involved, namely OAT1 and OAT3. While OAT1 as an exchanger clearly operates in the secretory direction, OAT3 in its previously supposed mode as a uniporter should move anionic substrates from cell to blood. It would thus dissipate gradients established by OAT1 of common OAT1/OAT3 substrates. In the present study we therefore reinvestigated the driving forces of human OAT3. Methods: The human OAT3 obtained from the Resource Center/Primary Database was made functional by site-directed mutagenesis. Using the Xenopus laevis oocyte expression system, hOAT3-mediated transport of estrone sulfate (ES) and dicarboxylates was assayed for cis-inhibition and/or trans-stimulation in both the uptake and efflux direction. Results: hOAT3-mediated efflux of glutarate (GA), can be significantly trans-stimulated by a variety of ions with high cis-inhibitory potency, including GA (282%), α-ketoglutarate (476%), p-aminohippurate (179%), and, most notably, urate (167%). Urate cis-inhibited ES uptake with an IC50 close to normal serum urate concentrations. Conclusion: These data indicate that OAT3 does not represent a uniporter but operates as an organic ion%dicarboxylate exchanger similar to OAT1, and may mediate renal urate secretion.


Pflügers Archiv: European Journal of Physiology | 2007

Gender differences in kidney function

Ivan Sabolić; Abdul R. Asif; Wolfgang Budach; Christoph Wanke; Andrew Bahn; Gerhard Burckhardt

Sex hormones influence the development of female (F) and male (M) specific traits and primarily affect the structure and function of gender-specific organs. Recent studies also indicated their important roles in regulating structure and/or function of nearly every tissue and organ in the mammalian body, including the kidneys, causing gender differences in a variety of characteristics. Clinical observations in humans and studies in experimental animals in vivo and in models in vitro have shown that renal structure and functions under various physiological, pharmacological, and toxicological conditions are different in M and F, and that these differences may be related to the sex-hormone-regulated expression and action of transporters in the apical and basolateral membrane of nephron epithelial cells. In this review we have collected published data on gender differences in renal functions, transporters and other related parameters, and present our own microarray data on messenger RNA expression for various transporters in the kidney cortex of M and F rats. With these data we would like to emphasize the importance of sex hormones in regulation of a variety of renal transport functions and to initiate further studies of gender-related differences in kidney structure and functions, which would enable us to better understand occurrence and development of various renal diseases, pharmacotherapy, and drug-induced nephrotoxicity in humans and animals.


Toxicology | 2009

Molecular evidence for an involvement of organic anion transporters (OATs) in aristolochic acid nephropathy.

Nadiya Bakhiya; Volker M. Arlt; Andrew Bahn; Gerhard Burckhardt; David H. Phillips; Hansruedi Glatt

Aristolochic acid (AA), present in Aristolochia species, is the major causative agent in the development of severe renal failure and urothelial cancers in patients with AA nephropathy. It may also be a cause of Balkan endemic nephropathy. Epithelial cells of the proximal tubule are the primary cellular target of AA. To study whether organic anion transporters (OATs) expressed in proximal tubule cells are involved in uptake of AA, we used human epithelial kidney (HEK293) cells stably expressing human (h) OAT1, OAT3 or OAT4. AA potently inhibited the uptake of characteristic substrates, p-aminohippurate for hOAT1 and estrone sulfate for hOAT3 and hOAT4. Aristolochic acid I (AAI), the more cytotoxic and genotoxic AA congener, exhibited high affinity for hOAT1 (K(i)=0.6 microM) as well as hOAT3 (K(i)=0.5 microM), and lower affinity for hOAT4 (K(i)=20.6 microM). Subsequently, AAI-DNA adduct formation (investigated by (32)P-postlabelling) was used as a measure of AAI uptake. Significantly higher levels of adducts occurred in hOAT-expressing cells than in control cells: this effect was abolished in the presence of the OAT inhibitor probenecid. In Xenopus laevis oocytes hOAT-mediated efflux of p-aminohippurate was trans-stimulated by extracellular AA, providing further molecular evidence for AA translocation by hOATs. Our study indicates that OATs can mediate the uptake of AA into proximal tubule cells and thereby participate in kidney cell damage by this toxin.


The Journal of Steroid Biochemistry and Molecular Biology | 2008

Functional differences in steroid sulfate uptake of organic anion transporter 4 (OAT4) and organic anion transporting polypeptide 2B1 (OATP2B1) in human placenta

Bernhard Ugele; Andrew Bahn; Monika Rex-Haffner

Human trophoblasts depend on the supply of external precursors such as dehydroepiandrosterone-3-sulfate (DHEA-S) and 16alpha-OH-DHEA-S for synthesis of estrogens. Recently, we have characterized the uptake of DHEA-S by isolated mononucleated trophoblasts and identified different transporter polypeptides involved in this process. Immunohistochemistry of 1st and 3rd trimester placenta detected organic anion transporter 4 (OAT4) and organic anion transporting polypeptide 2B1 (OATP2B1, former name OATP-B) in cytotrophoblast membranes and at the basal surface of the syncytiotrophoblast, indicating that both transporter polypeptides are involved in placental uptake of foetal derived steroid sulfates. In the present study we have characterized and compared the kinetics of DHEA-S and estrone sulfate (E(1)S) uptake by these transporters stably expressed in FlpIn -HEK293 cells using the Flp recombinase-mediated site-specific recombination. Uptake of E(1)S by OAT4- and OATP2B1-transfected cells was highly increased compared to the non-transfected cells. In contrast, DHEA-S uptake was only highly increased in OAT4 (40 times), but only weakly enhanced in OATP2B1 cells. The uptake of DHEA-S and E(1)S by OAT4 was partly Na(+)-dependent (about 50%), whereas uptake of DHEA-S by OATP2B1 was Na(+)-independent. Kinetic analysis of the initial uptake rates of E(1)S by OAT4 and OATP2B1 gave very similar values for K(m) (about 20microM) and V(max) (about 600pmol/(minxmg protein)). In contrast, the affinity of DHEA-S towards OATP2B1 was about 10 times lower (K(m)>200microM) then for OAT4 (K(m)=29microM). Our results suggest different physiological roles of the two transporter polypeptides in placental uptake of foetal derived steroid sulfates. OATP2B1 seems not to be involved in de novo synthesis of placental estrogens but may contribute to the clearance of estrogen sulfates from foetal circulation.


Nephrology Dialysis Transplantation | 2011

URAT1 mutations cause renal hypouricemia type 1 in Iraqi Jews

Dganit Dinour; Andrew Bahn; Liat Ganon; Rotem Ron; Ossie Geifman-Holtzman; Aaron Knecht; Uzi Gafter; Ruth Rachamimov; Ben-Ami Sela; Gerhard Burckhardt; Eliezer J. Holtzman

BACKGROUND Hereditary renal hypouricemia may be complicated by nephrolithiasis or exercise-induced acute renal failure. Most patients described so far are of Japanese origin and carry the truncating mutation W258X in the uric acid transporter URAT1 encoded by SLC22A12. Recently, we described severe renal hypouricemia in Israeli patients with uric acid transporter GLUT9 (SLC2A9) loss-of-function mutations. Renal hypouricemia in Iraqi Jews has been previously reported, but its molecular basis has not been ascertained. METHODS Three Jewish Israeli families of Iraqi origin with hereditary hypouricemia and hyperuricosuria were clinically characterized. DNA was extracted and the URAT1 gene was sequenced. Transport studies into Xenopus laevis oocytes were utilized to evaluate the function of URAT1 mutants found. RESULTS A missense URAT1 mutation, R406C, was detected in all three families. Two affected siblings were found to carry in addition a homozygous missense URAT1 mutation, G444R. Both mutations dramatically impaired urate uptake into X. laevis oocytes. Moreover, we demonstrate for the first time that URAT1 facilitates urate efflux, which was abolished in the mutants, indicating also a secretion defect. Homozygous patients had serum uric acid concentrations of 0.5-0.8 mg% and a fractional excretion of uric acid of 50-85%. Most individuals studied were asymptomatic, two had nephrolithiasis and none developed exercise-induced acute renal failure. CONCLUSIONS The URAT1 R406C mutation detected in all three families is likely to be the founder mutation in Iraqi Jews. Our findings contribute to a better definition of the different types of hereditary renal hypouricemia and suggest that the phenotype of this disorder depends mainly on the degree of inhibition of uric acid transport.


Journal of The American Society of Nephrology | 2006

Uptake of Chemically Reactive, DNA-Damaging Sulfuric Acid Esters into Renal Cells by Human Organic Anion Transporters

Nadiya Bakhiya; Monika Stephani; Andrew Bahn; Bernhard Ugele; Albrecht Seidel; Gerhard Burckhardt; Hansruedi Glatt

The procarcinogen 1-methylpyrene is activated by hepatic enzymes via 1-hydroxymethylpyrene to 1-sulfooxymethylpyrene (1-SMP), a highly reactive and mutagenic metabolite. Previously, high levels of 1-SMP DNA adducts were observed in rat kidneys after intraperitoneal administration of 1-hydroxymethylpyrene or 1-SMP. This study examined whether organic anion transporters (OAT) that are expressed at the basolateral membrane of proximal tubule cells are involved in uptake of SMP. Human epithelial kidney (HEK293) cells that stably express human OAT1 (hOAT1) and hOAT3 were used. Stable isomers of 1-SMP, (2-SMP and 4-SMP) competitively inhibited the uptake of characteristic substrates p-aminohippurate for hOAT1 and estrone sulfate for hOAT3. Both inhibitors exhibited high affinity for hOAT1 (K(i) = 4.4 microM for 2-SMP; K(i) = 5.1 microM for 4-SMP) as well as hOAT3 (K(i) = 1.9 microM for 2-SMP; K(i) = 2.1 microM for 4-SMP). The uptake rate of 4-SMP (at a concentration of 10 microM) by hOAT1- and hOAT3-expressing cells was 3.0 and 1.6 times higher, respectively, than in control cells. Uptake of the reactive isomer 1-SMP was investigated using as the end point the level of DNA adducts that were formed in the cells. After exposure to 1-SMP (10 microM), the DNA adduct level was 4.6 and 3.0 times higher in hOAT1- and hOAT3-expressing cells, respectively, than in control cells. The enhanced DNA adduct formation in hOAT-expressing cells was abolished in the presence of the OAT inhibitor probenecid. This study indicates that OAT can mediate the basolateral uptake of reactive sulfuric acid esters into proximal tubule cells and thereby participate in kidney cell damage by these compounds.


Biochimie | 2002

Cloning of the pig renal organic anion transporter 1 (pOAT1).

Yohannes Hagos; Andrew Bahn; Abdul R. Asif; Wolfgang Krick; Mark Sendler; Gerhard Burckhardt

A pig kidney cDNA library was screened for the porcine ortholog of the multispecific organic anion transporter 1 (pOAT1). Several positive clones were isolated resulting in two alternatively spliced cDNA clones of pOAT1 (pOAT1 and pOAT1A). pOAT1-cDNAs consist of 2126 or 1895 base pairs (EMBL Acc. No. AJ308234 and AJ308235) encoding 547 or 533 amino acid residue proteins with 89, 87, 83 and 81% homology to the human, rabbit, rat, and mouse OAT1, respectively. Heterologous expression of pOAT1 in Xenopus laevis oocytes revealed an apparent K(m) for [3H]PAH of 3.75 +/- 1.6 microM. [3H]PAH uptake mediated by pOAT1 was abolished by 0.5 mM glutarate or 1 mM probenecid. Functional characterization of pOAT1A did not show any affinity for [3H]PAH. In summary, we cloned two alternative splice variants of the pig ortholog of organic anion transporter 1. One splice form (pOAT1) showed typical functional characteristics of organic anion transporter 1, whereas the second form appears not to transport PAH.


Journal of The American Society of Nephrology | 2007

Torasemide Transport by Organic Anion Transporters Contributes to Hyperuricemia

Yohannes Hagos; Andrew Bahn; Stefan Viktor Vormfelde; Jürgen Brockmöller; Gerhard Burckhardt

The high renal clearance of torasemide, the most potent loop diuretic, suggests active tubular secretion in the proximal tubule. Previous studies implicated the organic anion transporters (OAT) in this process; human OAT1 (hOAT1) and hOAT3 are found on the basolateral surface of proximal tubule

Collaboration


Dive into the Andrew Bahn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yohannes Hagos

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Abdul R. Asif

University of Göttingen

View shared research outputs
Researchain Logo
Decentralizing Knowledge