Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew Binley is active.

Publication


Featured researches published by Andrew Binley.


Archive | 2005

DC Resistivity and Induced Polarization Methods

Andrew Binley; Andreas Kemna

Direct current (DC) resistivity (here referred to as resistivity) and induced polarization (IP) methods allow, respectively, the determination of the spatial distribution of the low-frequency resistive and capacitive characteristics of soil. Since both properties are affected by lithology, pore fluid chemistry, and water content (see Chapter 4 of this volume), these methods have significant potential for hydrogeophysical applications. The methods can be applied at a wide range of laboratory and field scales, and surveys may be made in arbitrary geometrical configurations (e.g., on the soil surface and down boreholes). In fact, resistivity methods are one of the most widely used sets of geophysical techniques in hydrogeophysics. These surveys are relatively easy to carry out, instrumentation is inexpensive, data processing tools are widely available, and the relationships between resistivity and hydrological properties, such as porosity and moisture content, are reasonably well established. In contrast, applications of induced polarization methods in hydrogeophysics have been limited. As noted by Slater and Lesmes (2002), this is partly because of the more complex procedure for data acquisition, but also because the physicochemical interpretation of induced polarization parameters is not fully understood.


Journal of Hydrology | 2002

Vadose zone flow model parameterisation using cross-borehole radar and resistivity imaging

Andrew Binley; Giorgio Cassiani; Roy Middleton; Peter Winship

Cross-borehole geoelectrical imaging, in particular electrical resistivity tomography (ERT) and transmission radar tomography, can provide high-resolution images of hydrogeological structures and, in some cases, detailed assessment of dynamic processes in the subsurface environment. Through appropriate petrophysical relationships, these tools offer data suitable for parameterising and constraining models of groundwater flow. This is demonstrated using cross-borehole radar and resistivity measurements collected during a controlled vadose zone tracer test, performed at a field site in the UK Sherwood Sandstone. Both methods show clearly the vertical migration of the tracer over a 200 h monitoring period. By comparing first and second spatial moments of changes in moisture content predicted from a numerical simulation of vadose zone flow with equivalent statistics from two- and three-dimensional ERT and cross-borehole radar profiles the effective hydraulic conductivity is estimated to be approximately 0.4 m/d. Such a value is comparable to field estimates from borehole hydraulic tests carried out in the saturated zone at the field site and provides valuable information that may be utilised to parameterise pollutant transport models of the site.


Journal of Applied Geophysics | 2000

Cross-hole electrical imaging of a controlled saline tracer injection

Lee Slater; Andrew Binley; William Daily; R. Johnson

Electrical imaging of tracer tests can provide valuable information on the spatial variability of solute transport processes. This concept was investigated by cross-borehole electrical imaging of a controlled release in an experimental tank. A saline tracer (conductivity 8×103 ms/m volume 270 l) was injected into a tank facility (dimensions 10×10×3 m) consisting of alternating sand and clay layers. Injection was from 0.3 m below the surface, at a point where maximum interaction between tank structure and tracer transport was expected. Repeated imaging over a two-week period detected non-uniform tracer transport, partly caused by the sand/clay sequence. Tracer accumulation on two clay layers was observed and density-driven spill of tracer over a clay shelf was imaged. An additional unexpected flow pathway, probably caused by complications during array installation, was identified close to an electrode array. Pore water samples obtained following termination of electrical imaging generally supported the observed electrical response, although discrepancies arose when analysing the response of individual pixels. The pixels that make up the electrical images were interpreted as a large number of breakthrough curves. The shape of the pixel breakthrough-recession curve allowed some quantitative interpretation of solute travel time, as well as a qualitative assessment of spatial variability in advective-dispersive transport characteristics across the image plane. Although surface conduction effects associated with the clay layers complicated interpretation, the plotting of pixel breakthroughs was considered a useful step in the hydrological interpretation of the tracer test. The spatial coverage provided by the high density of pixels is the factor that most encourages the approach.


Water Resources Research | 2005

Relationship between spectral induced polarization and hydraulic properties of saturated and unsaturated sandstone

Andrew Binley; Lee Slater; Melanie Fukes; Giorgio Cassiani

There is growing interest in the use of geophysical methods for hydrological model parameterization. Empirical induced polarization (IP)–hydraulic conductivity (K) relationships have been developed, but these are only applicable to sediments in which the IP response shows limited variation with electrical current frequency. Here we examine the spectral IP response of samples taken from a UK sandstone aquifer and compare measured parameters with physical and hydraulic properties. We demonstrate the limited value of existing IP-K models due to the inherent IP frequency dependence of these samples. Our results show how the mean relaxation time, τ, is a more appropriate measure of IP response for these sediments. A significant inverse correlation between the surface area to pore volume ratio and τ is observed, suggesting that τ is a measure of a characteristic hydraulic length scale. This is supported by a measured strong positive correlation between log τ and log K. Our measurements also reveal evidence of a relationship between τ and a dominant pore throat size, which leads to postulations about the parallelism between the spectral IP behavior and unsaturated hydraulic characteristics. Additional experiments show how the relaxation time is affected by degree of fluid saturation, indicating that saturation levels must be accounted for if our empirical relationships are applied to vadose zone studies. Our results show clear evidence of the potential value of frequency-based IP measurements for parameterization of groundwater flow models.


Water Resources Research | 2006

Improved hydrogeophysical characterization using joint inversion of cross-hole electrical resistance and ground-penetrating radar traveltime data

Niklas Linde; Andrew Binley; Ari Tryggvason; Laust B. Pedersen; A. Revil

Appropriate regularizations of geophysical inverse problems and joint inversion of different data types improve geophysical models and increase their usefulness in hydrogeological studies. We have developed an efficient method to calculate stochastic regularization operators for given geostatistical models. The method, which combines circulant embedding and the diagonalization theorem of circulant matrices, is applicable for stationary geostatistical models when the grid discretization, in each spatial direction, is uniform in the volume of interest. We also used a structural approach to jointly invert cross-hole electrical resistance and ground-penetrating radar traveltime data in three dimensions. The two models are coupled by assuming, at all points, that the cross product of the gradients of the two models is zero. No petrophysical relationship between electrical conductivity and relative permittivity is assumed but is instead obtained as a by-product of the inversion. The approach has been applied to data collected in a U.K. sandstone aquifer in order to improve characterization of the vadose zone hydrostratigraphy. By analyzing scatterplots of electrical conductivity versus relative permittivity together with petrophysical models a zonation could be obtained with corresponding estimates of the electrical formation factor, the water content, and the effective grain radius of the sediments. The approach provides greater insight into the hydrogeological characteristics of the subsurface than by using conventional geophysical inversion methods.


Water Resources Research | 2001

High-resolution characterization of vadose zone dynamics using cross-borehole radar

Andrew Binley; Peter Winship; Roy Middleton; Magdeline Pokar; Jared West

Characterization of the dynamics of moisture migration in the unsaturated zone of aquifers is essential if reliable estimates of the transport of pollutants threatening such aquifers are to be made. Electrical geophysical investigation techniques, such as ground-penetrating radar, offer suitable methods for monitoring moisture content changes in the vadose zone. Moreover, these tools permit relatively large measurement scales, appropriate for hydrological models of unsaturated processes, and thus they offer a distinct advantage over conventional measurement approaches. Ground-penetrating radar, when applied in transmission mode between boreholes, can provide high-resolution information on lithological and hydrological features. The technique may be applied in tomographic mode and in a much simpler vertical profile mode. Both modes of measurement have been utilized using two boreholes 5 m apart located at a field site in the UK Sherwood Sandstone aquifer. Radar transmission measurements have been used to characterize the change in moisture content in unsaturated sandstone due to controlled water tracer injection. Continual monitoring of cross-borehole radar measurements over an 18 month period has also permitted determination of travel times of natural loading to the system and has revealed the impact of subtle contrasts in lithology on changes in moisture content over time. The time series of inferred moisture contents show clearly wetting and drying fronts migrating at a rate of approximately 2 m month−1 throughout the sandstone.


Journal of Hydrology | 2002

Seasonal variation of moisture content in unsaturated sandstone inferred from borehole radar and resistivity profiles

Andrew Binley; Peter Winship; L. Jared West; Magdeline Pokar; Roy Middleton

Understanding the processes controlling recharge to aquifers is critical if accurate predictions are to be made on the fate of contaminants in the subsurface environment. In order to understand fully the hydrochemical mechanisms in the vadose zone it is essential that the dynamics of the hydrology can be suitably characterised. The correlation between moisture content and both bulk dielectric and resistivity properties of porous media is well established. Using suitably placed sensors in boreholes detailed depth profiles of dielectric and resistivity behaviour have been monitored over a period of two years at a Triassic Sherwood Sandstone aquifer field site at Hatfield, England. The borehole–borehole transmission radar and borehole resistivity profiles show a significant correlation. Through appropriate petrophysical relationships, derived from core samples, seasonal dynamics of the vadose zone are seen to illustrate the migration of wetting and drying fronts over the monitoring period. At a second field site in Eggborough, located 17 km from Hatfield, similar temporal changes in moisture content in the sandstone were observed using borehole radar profiles. Travel times of seasonal wetting fronts through the sandstone at both sites appear to be approximately 2 m per month. The retardation of this front propagation in the top 3 m is also common to both sites, suggesting that pollutant transport may be principally controlled by near surface sediments. The results have important consequences to existing groundwater modelling programmes that are being utilised to predict transfer of agricultural chemicals through the vadose zone.


Geophysics | 2004

Crosshole IP imaging for engineering and environmental applications

Andreas Kemna; Andrew Binley; Lee Slater

Induced polarization (IP) imaging is a promising tool in engineering and environmental studies. Application of this technique for near-surface investigations has previously been limited by incomplete understanding of the physicochemical controls on the IP response, together with a lack of appropriate methods for data inversion. As laboratory studies have shown, description of IP in terms of complex electrical conductivity enables access to various structural characteristics pertinent to practical issues such as subsurface lithology definition, hydraulic permeability estimation, or hydrocarbon contaminant mapping. In particular, analysis in terms of real and imaginary conductivity components offers improved lithological characterization, since surface polarization effects are separated from electrolytic and surface conduction effects. An Occam-type IP inversion algorithm based on complex algebra is described which accounts for these advances in IP interpretation by directly solving for complex conductivity. Results from crosshole applications at two case study sites demonstrate the suitability of the IP imaging approach for subsurface characterization. In the first case study, the imaging results correlate with the observed complex sequence of Quaternary sediments at a waste disposal site. Characterization of the polarizability of these sediments offers significant value in lithological differentiation. In the second case study, the results of IP imaging at a hydrocarbon-contaminated site illustrate the potential of the method in environmental studies. The hydrocarbon location is clearly evident from the IP image, and a markedly different response is observed at an uncontaminated region of the site. By adopting empirical structural‐electrical relationships, images of textural and hydraulic properties are estimated as a step toward improved quantitative characterization. The success of the method for these contrasting applications supports further investigation into understanding the physical and chemical processes that control observed IP.


Water Resources Research | 1996

Examination of Solute Transport in an Undisturbed Soil Column Using Electrical Resistance Tomography

Andrew Binley; Siobhan Henry-Poulter; Ben Shaw

In an effort to determine the internal spatial characteristics of solute transport in naturally heterogeneous soils, recent applications of electrical resistance tomography to soil core tracing are reported. Using a high-speed, biomedical type data acquisition system, migration of an electrolytic tracer in an undisturbed soil column was monitored. Quantitative images produced from the collected data display an interesting sequence of patterns of internal tracer breakthrough at cross sections of the soil column. Analysis of pixel breakthrough behavior reveals spatial variation of transport characteristics throughout the soil column.


Water Resources Research | 2015

The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales

Andrew Binley; Susan S. Hubbard; Johan Alexander Huisman; A. Revil; David A. Robinson; Kamini Singha; Lee Slater

Abstract Geophysics provides a multidimensional suite of investigative methods that are transforming our ability to see into the very fabric of the subsurface environment, and monitor the dynamics of its fluids and the biogeochemical reactions that occur within it. Here we document how geophysical methods have emerged as valuable tools for investigating shallow subsurface processes over the past two decades and offer a vision for future developments relevant to hydrology and also ecosystem science. The field of “hydrogeophysics” arose in the late 1990s, prompted, in part, by the wealth of studies on stochastic subsurface hydrology that argued for better field‐based investigative techniques. These new hydrogeophysical approaches benefited from the emergence of practical and robust data inversion techniques, in many cases with a view to quantify shallow subsurface heterogeneity and the associated dynamics of subsurface fluids. Furthermore, the need for quantitative characterization stimulated a wealth of new investigations into petrophysical relationships that link hydrologically relevant properties to measurable geophysical parameters. Development of time‐lapse approaches provided a new suite of tools for hydrological investigation, enhanced further with the realization that some geophysical properties may be sensitive to biogeochemical transformations in the subsurface environment, thus opening up the new field of “biogeophysics.” Early hydrogeophysical studies often concentrated on relatively small “plot‐scale” experiments. More recently, however, the translation to larger‐scale characterization has been the focus of a number of studies. Geophysical technologies continue to develop, driven, in part, by the increasing need to understand and quantify key processes controlling sustainable water resources and ecosystem services.

Collaboration


Dive into the Andrew Binley's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kamini Singha

Colorado School of Mines

View shared research outputs
Top Co-Authors

Avatar

Catherine M. Heppell

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Frederick D. Day-Lewis

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Katrina Lansdown

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

William Daily

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge