Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew C. Box is active.

Publication


Featured researches published by Andrew C. Box.


Cell | 2012

Noncanonical Wnt signaling maintains hematopoietic stem cells in the niche

Ryohichi Sugimura; Xi C. He; Aparna Venkatraman; Fumio Arai; Andrew C. Box; Craig L. Semerad; Jeffrey S. Haug; Lai Peng; Xiao-bo Zhong; Toshio Suda; Linheng Li

Wnt signaling is involved in self-renewal and maintenance of hematopoietic stem cells (HSCs); however, the particular role of noncanonical Wnt signaling in regulating HSCs in vivo is largely unknown. Here, we show Flamingo (Fmi) and Frizzled (Fz) 8, members of noncanonical Wnt signaling, both express in and functionally maintain quiescent long-term HSCs. Fmi regulates Fz8 distribution at the interface between HSCs and N-cadherin(+) osteoblasts (N-cad(+)OBs that enrich osteoprogenitors) in the niche. We further found that N-cad(+)OBs predominantly express noncanonical Wnt ligands and inhibitors of canonical Wnt signaling under homeostasis. Under stress, noncanonical Wnt signaling is attenuated and canonical Wnt signaling is enhanced in activation of HSCs. Mechanistically, noncanonical Wnt signaling mediated by Fz8 suppresses the Ca(2+)-NFAT- IFNγ pathway, directly or indirectly through the CDC42-CK1α complex and also antagonizes canonical Wnt signaling in HSCs. Taken together, our findings demonstrate that noncanonical Wnt signaling maintains quiescent long-term HSCs through Fmi and Fz8 interaction in the niche.


Gastroenterology | 2013

Isolation and Characterization of Intestinal Stem Cells Based on Surface Marker Combinations and Colony-Formation Assay

Fengchao Wang; David Scoville; Xi C. He; Maxime M. Mahe; Andrew C. Box; John M. Perry; Nicholas R. Smith; Nan Ye Lei; Paige S. Davies; Megan K. Fuller; Jeffrey S. Haug; Melainia McClain; Adam D. Gracz; Sheng Ding; Matthias Stelzner; James C.Y. Dunn; Scott T. Magness; Melissa H. Wong; Martin G. Martin; Michael A. Helmrath; Linheng Li

BACKGROUND & AIMS Identification of intestinal stem cells (ISCs) has relied heavily on the use of transgenic reporters in mice, but this approach is limited by mosaic expression patterns and difficult to directly apply to human tissues. We sought to identify reliable surface markers of ISCs and establish a robust functional assay to characterize ISCs from mouse and human tissues. METHODS We used immunohistochemistry, real-time reverse-transcription polymerase chain reaction, and fluorescence-activated cell sorting (FACS) to analyze intestinal epithelial cells isolated from mouse and human intestinal tissues. We compared different combinations of surface markers among ISCs isolated based on expression of Lgr5-green fluorescent protein. We developed a culture protocol to facilitate the identification of functional ISCs from mice and then tested the assay with human intestinal crypts and putative ISCs. RESULTS CD44(+)CD24(lo)CD166(+) cells, isolated by FACS from mouse small intestine and colon, expressed high levels of stem cell-associated genes. Transit-amplifying cells and progenitor cells were then excluded based on expression of GRP78 or c-Kit. CD44(+)CD24(lo)CD166(+) GRP78(lo/-) putative stem cells from mouse small intestine included Lgr5-GFP(hi) and Lgr5-GFP(med/lo) cells. Incubation of these cells with the GSK inhibitor CHIR99021 and the E-cadherin stabilizer Thiazovivin resulted in colony formation by 25% to 30% of single-sorted ISCs. CONCLUSIONS We developed a culture protocol to identify putative ISCs from mouse and human tissues based on cell surface markers. CD44(+)CD24(lo)CD166(+), GRP78(lo/-), and c-Kit(-) facilitated identification of putative stem cells from the mouse small intestine and colon, respectively. CD44(+)CD24(-/lo)CD166(+) also identified putative human ISCs. These findings will facilitate functional studies of mouse and human ISCs.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Genetic and dietary regulation of lipid droplet expansion in Caenorhabditis elegans

Shaobing O. Zhang; Andrew C. Box; Ningyi Xu; Johan Le Men; Jingyi Yu; Fengli Guo; Rhonda Trimble; Ho Yi Mak

Dietary fat accumulates in lipid droplets or endolysosomal compartments that undergo selective expansion under normal or pathophysiological conditions. We find that genetic defects in a peroxisomal β-oxidation pathway cause size expansion in lipid droplets that are distinct from the lysosome-related organelles in Caenorhabditis elegans. Expansion of lipid droplets is accompanied by an increase in triglycerides (TAG) that are resistant to fasting- or TAG lipase-triggered lipolysis. Nevertheless, in mutant animals, a diet poor in vaccenic acid reduced the TAG level and lipid droplet size. Our results implicate peroxisomal dysfunction in pathologic lipid droplet expansion in animals and illustrate how dietary factors modulate the phenotype of such genetic defects.


PLOS Genetics | 2012

Cohesin proteins promote ribosomal RNA production and protein translation in yeast and human cells.

Tania Bose; Kenneth K. Lee; Shuai Lu; Baoshan Xu; Bethany Harris; Brian D. Slaughter; Jay R. Unruh; Alexander S. Garrett; William McDowell; Andrew C. Box; Hua Li; Allison Peak; Chris Seidel; Jennifer L. Gerton

Cohesin is a protein complex known for its essential role in chromosome segregation. However, cohesin and associated factors have additional functions in transcription, DNA damage repair, and chromosome condensation. The human cohesinopathy diseases are thought to stem not from defects in chromosome segregation but from gene expression. The role of cohesin in gene expression is not well understood. We used budding yeast strains bearing mutations analogous to the human cohesinopathy disease alleles under control of their native promoter to study gene expression. These mutations do not significantly affect chromosome segregation. Transcriptional profiling reveals that many targets of the transcriptional activator Gcn4 are induced in the eco1-W216G mutant background. The upregulation of Gcn4 was observed in many cohesin mutants, and this observation suggested protein translation was reduced. We demonstrate that the cohesinopathy mutations eco1-W216G and smc1-Q843Δ are associated with defects in ribosome biogenesis and a reduction in the actively translating fraction of ribosomes, eiF2α-phosphorylation, and 35S-methionine incorporation, all of which indicate a deficit in protein translation. Metabolic labeling shows that the eco1-W216G and smc1-Q843Δ mutants produce less ribosomal RNA, which is expected to constrain ribosome biogenesis. Further analysis shows that the production of rRNA from an individual repeat is reduced while copy number remains unchanged. Similar defects in rRNA production and protein translation are observed in a human Roberts syndrome cell line. In addition, cohesion is defective specifically at the rDNA locus in the eco1-W216G mutant, as has been previously reported for Roberts syndrome. Collectively, our data suggest that cohesin proteins normally facilitate production of ribosomal RNA and protein translation, and this is one way they can influence gene expression. Reduced translational capacity could contribute to the human cohesinopathies.


Molecular Cell | 2015

Mitotic Transcriptional Activation: Clearance of Actively Engaged Pol II via Transcriptional Elongation Control in Mitosis

Kaiwei Liang; Ashley R. Woodfin; Brian D. Slaughter; Jay R. Unruh; Andrew C. Box; Ryan Rickels; Xin Gao; Jeffrey S. Haug; Sue L. Jaspersen; Ali Shilatifard

Although it is established that some general transcription factors are inactivated at mitosis, many details of mitotic transcription inhibition (MTI) and its underlying mechanisms are largely unknown. We have identified mitotic transcriptional activation (MTA) as a key regulatory step to control transcription in mitosis for genes with transcriptionally engaged RNA polymerase II (Pol II) to activate and transcribe until the end of the gene to clear Pol II from mitotic chromatin, followed by global impairment of transcription reinitiation through MTI. Global nascent RNA sequencing and RNA fluorescence in situ hybridization demonstrate the existence of transcriptionally engaged Pol II in early mitosis. Both genetic and chemical inhibition of P-TEFb in mitosis lead to delays in the progression of cell division. Together, our study reveals a mechanism for MTA and MTI whereby transcriptionally engaged Pol II can progress into productive elongation and finish transcription to allow proper cellular division.


PLOS Genetics | 2011

Nuclear cGMP-dependent kinase regulates gene expression via activity-dependent recruitment of a conserved histone deacetylase complex.

Yan Hao; Ningyi Xu; Andrew C. Box; Laura Schaefer; Kasthuri Kannan; Ying Zhang; Laurence Florens; Christopher Seidel; Michael P. Washburn; Winfried Wiegraebe; Ho Yi Mak

Elevation of the second messenger cGMP by nitric oxide (NO) activates the cGMP-dependent protein kinase PKG, which is key in regulating cardiovascular, intestinal, and neuronal functions in mammals. The NO-cGMP-PKG signaling pathway is also a major therapeutic target for cardiovascular and male reproductive diseases. Despite widespread effects of PKG activation, few molecular targets of PKG are known. We study how EGL-4, the Caenorhabditis elegans PKG ortholog, modulates foraging behavior and egg-laying and seeks the downstream effectors of EGL-4 activity. Using a combination of unbiased forward genetic screen and proteomic analysis, we have identified a conserved SAEG-1/SAEG-2/HDA-2 histone deacetylase complex that is specifically recruited by activated nuclear EGL-4. Gene expression profiling by microarrays revealed >40 genes that are sensitive to EGL-4 activity in a SAEG-1–dependent manner. We present evidence that EGL-4 controls egg laying via one of these genes, Y45F10C.2, which encodes a novel protein that is expressed exclusively in the uterine epithelium. Our results indicate that, in addition to cytoplasmic functions, active EGL-4/PKG acts in the nucleus via a conserved Class I histone deacetylase complex to regulate gene expression pertinent to behavioral and physiological responses to cGMP. We also identify transcriptional targets of EGL-4 that carry out discrete components of the physiological response.


Nature | 2018

Insulin resistance in cavefish as an adaptation to a nutrient-limited environment

Misty R. Riddle; Ariel C. Aspiras; Karin Gaudenz; Robert Peuß; Jenny Y. Sung; Brian Martineau; Megan Peavey; Andrew C. Box; Julius A. Tabin; Suzanne E. McGaugh; Richard Borowsky; Clifford J. Tabin; Nicolas Rohner

Periodic food shortages are a major challenge faced by organisms in natural habitats. Cave-dwelling animals must withstand long periods of nutrient deprivation, as—in the absence of photosynthesis—caves depend on external energy sources such as seasonal floods. Here we show that cave-adapted populations of the Mexican tetra, Astyanax mexicanus, have dysregulated blood glucose homeostasis and are insulin-resistant compared to river-adapted populations. We found that multiple cave populations carry a mutation in the insulin receptor that leads to decreased insulin binding in vitro and contributes to hyperglycaemia. Hybrid fish from surface–cave crosses carrying this mutation weigh more than non-carriers, and zebrafish genetically engineered to carry the mutation have increased body weight and insulin resistance. Higher body weight may be advantageous in caves as a strategy to cope with an infrequent food supply. In humans, the identical mutation in the insulin receptor leads to a severe form of insulin resistance and reduced lifespan. However, cavefish have a similar lifespan to surface fish and do not accumulate the advanced glycation end-products in the blood that are typically associated with the progression of diabetes-associated pathologies. Our findings suggest that diminished insulin signalling is beneficial in a nutrient-limited environment and that cavefish may have acquired compensatory mechanisms that enable them to circumvent the typical negative effects associated with failure to regulate blood glucose levels.


Molecular Biology of the Cell | 2016

Transcriptome analysis of tetraploid cells identifies cyclin D2 as a facilitator of adaptation to genome doubling in the presence of p53

Tamara A. Potapova; Christopher Seidel; Andrew C. Box; Giulia Rancati; Rong Li

Gene expression analysis indicates that p53-mediated suppression of proliferation of polyploid cells can be averted by increased levels of oncogenes such as cyclin D2. Tetraploid cells can adapt and continue to proliferate despite having increased genome content and a wild-type p53 signaling cascade.


eLife | 2017

Single-cell transcriptome analysis of avian neural crest migration reveals signatures of invasion and molecular transitions

Jason A. Morrison; Rebecca McLennan; Lauren A. Wolfe; Madelaine Gogol; Samuel Meier; Mary Cathleen McKinney; Jessica M. Teddy; Laura Holmes; Craig L. Semerad; Andrew C. Box; Hua Li; Kathryn E Hall; Anoja Perera; Paul M. Kulesa

Neural crest cells migrate throughout the embryo, but how cells move in a directed and collective manner has remained unclear. Here, we perform the first single-cell transcriptome analysis of cranial neural crest cell migration at three progressive stages in chick and identify and establish hierarchical relationships between cell position and time-specific transcriptional signatures. We determine a novel transcriptional signature of the most invasive neural crest Trailblazer cells that is consistent during migration and enriched for approximately 900 genes. Knockdown of several Trailblazer genes shows significant but modest changes to total distance migrated. However, in vivo expression analysis by RNAscope and immunohistochemistry reveals some salt and pepper patterns that include strong individual Trailblazer gene expression in cells within other subregions of the migratory stream. These data provide new insights into the molecular diversity and dynamics within a neural crest cell migratory stream that underlie complex directed and collective cell behaviors.


G3: Genes, Genomes, Genetics | 2015

Single-Cell Based Quantitative Assay of Chromosome Transmission Fidelity

Jin Zhu; Dominic Heinecke; Wahid A. Mulla; William D. Bradford; Boris Rubinstein; Andrew C. Box; Jeffrey S. Haug; Rong Li

Errors in mitosis are a primary cause of chromosome instability (CIN), generating aneuploid progeny cells. Whereas a variety of factors can influence CIN, under most conditions mitotic errors are rare events that have been difficult to measure accurately. Here we report a green fluorescent protein−based quantitative chromosome transmission fidelity (qCTF) assay in budding yeast that allows sensitive and quantitative detection of CIN and can be easily adapted to high-throughput analysis. Using the qCTF assay, we performed genome-wide quantitative profiling of genes that affect CIN in a dosage-dependent manner and identified genes that elevate CIN when either increased (icCIN) or decreased in copy number (dcCIN). Unexpectedly, qCTF screening also revealed genes whose change in copy number quantitatively suppress CIN, suggesting that the basal error rate of the wild-type genome is not minimized, but rather, may have evolved toward an optimal level that balances both stability and low-level karyotype variation for evolutionary adaptation.

Collaboration


Dive into the Andrew C. Box's collaboration.

Top Co-Authors

Avatar

Jeffrey S. Haug

Stowers Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Hua Li

Stowers Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Craig L. Semerad

Stowers Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Linheng Li

Stowers Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Xi C. He

Stowers Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Allison Peak

Stowers Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Jay R. Unruh

Stowers Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Anoja Perera

Stowers Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Christopher Seidel

Stowers Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Fengchao Wang

Stowers Institute for Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge